Muhammad Mubashar Iqbal , Muhammad Ansar Farooq , Waqas ud Din Khan , Umair Ashraf , Alanoud T. Alfaghom , Saud Alamri
{"title":"玉米生长与生理动态:盐、硼、砷复合非生物胁迫下的砷吸收调节","authors":"Muhammad Mubashar Iqbal , Muhammad Ansar Farooq , Waqas ud Din Khan , Umair Ashraf , Alanoud T. Alfaghom , Saud Alamri","doi":"10.1016/j.eti.2024.103915","DOIUrl":null,"url":null,"abstract":"<div><div>Soil salinity and relatively high boron (B), frequently co-occur in agricultural environments, posing significant challenges to crop growth and productivity. This inhibitory effect on plant growth can be further exacerbated when crops like maize (<em>Zea mays</em> L.) are exposed to the arsenic (As) contaminated soils and irrigation water, along with elevated salinity and B levels. Understanding these combined effects is crucial for optimizing crop resilience. A hydroponic study was conducted to assess the interactive effects of high B and As under saline conditions on maize. Plants were stressed with salinity (60<!--> <!-->mM NaCl), boron (3<!--> <!-->mM H<sub>3</sub>BO<sub>3</sub>) and arsenic (40<!--> <!-->µM Na<sub>3</sub>AsO<sub>4</sub>) alone and in combination. A 20-day stress period caused significant reduction in overall growth, with more pronounced effect under combined stress. Root and shoot dry biomass was decreased by 63.45 and 57.84% while leaf area and chlorophyll index (SPAD value) were diminished by 56.34 and 64.23%, membrane stability index (MSI) and leaf relative water contents (RWC %) were reduced by 63.92 and 61.59% upon exposure to these combined stressors as compared to the control treatment. Arsenic stress increased the shoot and root As accumulation by 52.4 and 84.6-fold, respectively. However, high B and salinity effectively suppressed these levels due to their negative correlation with As uptake. Further in-depth phytometric profiling is needed to understand the underlying mechanisms of plant stress tolerance and nutrient homeostasis under these combined stresses.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103915"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize growth and physiological dynamics: Arsenic uptake modulation under combined abiotic stresses of salinity, boron and arsenic\",\"authors\":\"Muhammad Mubashar Iqbal , Muhammad Ansar Farooq , Waqas ud Din Khan , Umair Ashraf , Alanoud T. Alfaghom , Saud Alamri\",\"doi\":\"10.1016/j.eti.2024.103915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil salinity and relatively high boron (B), frequently co-occur in agricultural environments, posing significant challenges to crop growth and productivity. This inhibitory effect on plant growth can be further exacerbated when crops like maize (<em>Zea mays</em> L.) are exposed to the arsenic (As) contaminated soils and irrigation water, along with elevated salinity and B levels. Understanding these combined effects is crucial for optimizing crop resilience. A hydroponic study was conducted to assess the interactive effects of high B and As under saline conditions on maize. Plants were stressed with salinity (60<!--> <!-->mM NaCl), boron (3<!--> <!-->mM H<sub>3</sub>BO<sub>3</sub>) and arsenic (40<!--> <!-->µM Na<sub>3</sub>AsO<sub>4</sub>) alone and in combination. A 20-day stress period caused significant reduction in overall growth, with more pronounced effect under combined stress. Root and shoot dry biomass was decreased by 63.45 and 57.84% while leaf area and chlorophyll index (SPAD value) were diminished by 56.34 and 64.23%, membrane stability index (MSI) and leaf relative water contents (RWC %) were reduced by 63.92 and 61.59% upon exposure to these combined stressors as compared to the control treatment. Arsenic stress increased the shoot and root As accumulation by 52.4 and 84.6-fold, respectively. However, high B and salinity effectively suppressed these levels due to their negative correlation with As uptake. Further in-depth phytometric profiling is needed to understand the underlying mechanisms of plant stress tolerance and nutrient homeostasis under these combined stresses.</div></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"37 \",\"pages\":\"Article 103915\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424003912\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424003912","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在农业环境中,土壤盐分和相对高硼(B)经常同时出现,对作物生长和生产力构成重大挑战。当玉米(Zea mays L.)等作物暴露在砷(As)污染的土壤和灌溉水中,以及盐度和B水平升高时,这种对植物生长的抑制作用会进一步加剧。了解这些综合效应对于优化作物抗灾能力至关重要。采用水培法研究了高硼和高砷在盐渍条件下对玉米的交互作用。分别用盐(60 mM NaCl)、硼(3 mM H3BO3)和砷(40µM Na3AsO4)单独和联合胁迫植株。20天的应激期导致整体生长显著下降,联合应激的影响更为明显。与对照相比,根、梢干生物量分别减少了63.45%和57.84%,叶面积和叶绿素指数(SPAD值)分别减少了56.34%和64.23%,膜稳定性指数(MSI)和叶片相对含水量(RWC %)分别减少了63.92%和61.59%。砷胁迫使茎部和根部砷积累量分别增加了52.4倍和84.6倍。然而,高B和盐度有效地抑制了这些水平,因为它们与As吸收呈负相关。需要进一步深入的植物测量分析来了解这些综合胁迫下植物耐胁迫和营养稳态的潜在机制。
Maize growth and physiological dynamics: Arsenic uptake modulation under combined abiotic stresses of salinity, boron and arsenic
Soil salinity and relatively high boron (B), frequently co-occur in agricultural environments, posing significant challenges to crop growth and productivity. This inhibitory effect on plant growth can be further exacerbated when crops like maize (Zea mays L.) are exposed to the arsenic (As) contaminated soils and irrigation water, along with elevated salinity and B levels. Understanding these combined effects is crucial for optimizing crop resilience. A hydroponic study was conducted to assess the interactive effects of high B and As under saline conditions on maize. Plants were stressed with salinity (60 mM NaCl), boron (3 mM H3BO3) and arsenic (40 µM Na3AsO4) alone and in combination. A 20-day stress period caused significant reduction in overall growth, with more pronounced effect under combined stress. Root and shoot dry biomass was decreased by 63.45 and 57.84% while leaf area and chlorophyll index (SPAD value) were diminished by 56.34 and 64.23%, membrane stability index (MSI) and leaf relative water contents (RWC %) were reduced by 63.92 and 61.59% upon exposure to these combined stressors as compared to the control treatment. Arsenic stress increased the shoot and root As accumulation by 52.4 and 84.6-fold, respectively. However, high B and salinity effectively suppressed these levels due to their negative correlation with As uptake. Further in-depth phytometric profiling is needed to understand the underlying mechanisms of plant stress tolerance and nutrient homeostasis under these combined stresses.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.