六叶莴苣对Cu和Ni共污染的生理反应:植物修复的意义

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-11-28 DOI:10.1016/j.eti.2024.103924
Xuehong Zhang , Wanting Cui , Jun Yan , Xuemeng Yang , Mouyixing Chen , Pingping Jiang , Guo Yu
{"title":"六叶莴苣对Cu和Ni共污染的生理反应:植物修复的意义","authors":"Xuehong Zhang ,&nbsp;Wanting Cui ,&nbsp;Jun Yan ,&nbsp;Xuemeng Yang ,&nbsp;Mouyixing Chen ,&nbsp;Pingping Jiang ,&nbsp;Guo Yu","doi":"10.1016/j.eti.2024.103924","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the physiological responses, co-enrichment mechanisms, and rhizospheric environment characteristics of <em>L. hexandra</em> in soils polluted with copper (Cu) and nickel (Ni). The growth of <em>L. hexandra</em> was significantly inhibited (<em>p</em> &lt; 0.05) under combined Cu and Ni stress, particularly at higher Cu concentrations (150 mg·kg<sup>−1</sup>), leading to stunted growth, yellowing, and wilting. The accumulation of heavy metals was predominantly observed in the roots, with Cu showing a higher accumulation than Ni. Furthermore, heavy metal stress altered the rhizospheric microbial community, reducing the relative abundance of Firmicutes while increasing that of Proteobacteria, Patescibacteria, and Bacteroidota. The secretion of organic acids, particularly malic acid, increased under heavy metal stress, indicating an adaptive mechanism of <em>L. hexandra</em>. These findings enhance our understanding of the adaptation mechanisms of plants to heavy metal co-contamination and provide insights into the development of effective phytoremediation strategies. Future research will focus on field trials and advanced molecular analyses to further unravel the mechanisms of heavy metal tolerance in <em>L. hexandra</em>, enhancing its application in phytoremediation strategies.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103924"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological responses of Leersia hexandra Swart to Cu and Ni Co-contamination: Implications for phytoremediation\",\"authors\":\"Xuehong Zhang ,&nbsp;Wanting Cui ,&nbsp;Jun Yan ,&nbsp;Xuemeng Yang ,&nbsp;Mouyixing Chen ,&nbsp;Pingping Jiang ,&nbsp;Guo Yu\",\"doi\":\"10.1016/j.eti.2024.103924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the physiological responses, co-enrichment mechanisms, and rhizospheric environment characteristics of <em>L. hexandra</em> in soils polluted with copper (Cu) and nickel (Ni). The growth of <em>L. hexandra</em> was significantly inhibited (<em>p</em> &lt; 0.05) under combined Cu and Ni stress, particularly at higher Cu concentrations (150 mg·kg<sup>−1</sup>), leading to stunted growth, yellowing, and wilting. The accumulation of heavy metals was predominantly observed in the roots, with Cu showing a higher accumulation than Ni. Furthermore, heavy metal stress altered the rhizospheric microbial community, reducing the relative abundance of Firmicutes while increasing that of Proteobacteria, Patescibacteria, and Bacteroidota. The secretion of organic acids, particularly malic acid, increased under heavy metal stress, indicating an adaptive mechanism of <em>L. hexandra</em>. These findings enhance our understanding of the adaptation mechanisms of plants to heavy metal co-contamination and provide insights into the development of effective phytoremediation strategies. Future research will focus on field trials and advanced molecular analyses to further unravel the mechanisms of heavy metal tolerance in <em>L. hexandra</em>, enhancing its application in phytoremediation strategies.</div></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"37 \",\"pages\":\"Article 103924\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424004000\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424004000","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了铜、镍污染土壤中六分草的生理反应、共富集机制和根际环境特征。六子草的生长被显著抑制(p <;0.05),特别是Cu浓度较高(150 mg·kg−1),导致生长发育迟缓、黄变和萎蔫。重金属的积累以根系为主,其中Cu的积累量高于Ni。此外,重金属胁迫改变了根际微生物群落,降低了厚壁菌门的相对丰度,而增加了变形菌门、Patescibacteria和拟杆菌门的相对丰度。重金属胁迫下,枸杞有机酸尤其是苹果酸的分泌增加,表明枸杞的适应机制。这些发现增强了我们对植物对重金属共污染的适应机制的认识,并为开发有效的植物修复策略提供了见解。未来的研究将集中在田间试验和先进的分子分析方面,以进一步揭示六角草耐重金属的机制,提高其在植物修复策略中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physiological responses of Leersia hexandra Swart to Cu and Ni Co-contamination: Implications for phytoremediation
This study investigates the physiological responses, co-enrichment mechanisms, and rhizospheric environment characteristics of L. hexandra in soils polluted with copper (Cu) and nickel (Ni). The growth of L. hexandra was significantly inhibited (p < 0.05) under combined Cu and Ni stress, particularly at higher Cu concentrations (150 mg·kg−1), leading to stunted growth, yellowing, and wilting. The accumulation of heavy metals was predominantly observed in the roots, with Cu showing a higher accumulation than Ni. Furthermore, heavy metal stress altered the rhizospheric microbial community, reducing the relative abundance of Firmicutes while increasing that of Proteobacteria, Patescibacteria, and Bacteroidota. The secretion of organic acids, particularly malic acid, increased under heavy metal stress, indicating an adaptive mechanism of L. hexandra. These findings enhance our understanding of the adaptation mechanisms of plants to heavy metal co-contamination and provide insights into the development of effective phytoremediation strategies. Future research will focus on field trials and advanced molecular analyses to further unravel the mechanisms of heavy metal tolerance in L. hexandra, enhancing its application in phytoremediation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Biological nitrogen fixation driven by methane anaerobic oxidation supports the complex biological communities in cold-seep habitat Effects of combined applications of S-nZVI and organic amendments on cadmium and arsenic accumulation in rice: Possible mechanisms and potential impacts on soil health Microcoleus vaginatus: A novel amendment for constructing artificial soil from tailings Waste napkin biochar with high-performance designed for antibiotic rapidly removal Leveraging metabolomics and ionomics to illuminate aluminum-induced toxicity in mouse organs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1