微囊藻毒素在实验水生食物链中生物积累但不生物放大

IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Harmful Algae Pub Date : 2024-11-23 DOI:10.1016/j.hal.2024.102768
Dani Glidewell, Jessica E. Beyer, K. David Hambright
{"title":"微囊藻毒素在实验水生食物链中生物积累但不生物放大","authors":"Dani Glidewell,&nbsp;Jessica E. Beyer,&nbsp;K. David Hambright","doi":"10.1016/j.hal.2024.102768","DOIUrl":null,"url":null,"abstract":"<div><div>Microcystins—common hepatotoxins produced by cyanobacteria—have been detected in a wide range of organisms, though research examining the trophic transfer of microcystins and whether microcystins bioaccumulate or biomagnify in food webs has generated contradictory results. Here, we explored the trophic transfer of microcystins from the herbivorous water flea, <em>Daphnia pulex</em>, to the predatory larvae of a damselfly, <em>Enallagma</em> sp. We tested the hypotheses that microcystins transfer from the tissue of herbivorus zooplankton to that of predatory invertebrates and that these toxins biomagnify across trophic levels. We also assessed the relative contribution of toxin transfer from the gut and tissue of <em>Daphnia pulex</em> to <em>Enallagma</em> sp. We found that microcystins are effectively sequestered in the tissue of <em>Daphnia pulex</em>, and that these sequestered toxins are then transferred to the tissue of <em>Enallagma</em> sp. The contribution of gut contents to toxin transfer was negligible. Contrary to the pattern predicted by biomagnification, we found that the concentration of microcystins decreased with increasing trophic levels. Our results support the hypothesis that microcystins can be transferred trophically, but do not support the hypothesis that microcystins biomagnify from lower to higher trophic levels. Conversly, we observe biodilution in this system. These results have consequences for the impact of microcystins across trophic levels in a changing world with increasing intensity and duration of harmful algal blooms.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"141 ","pages":"Article 102768"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microcystins bioaccumulate but do not biomagnify in an experimental aquatic food chain\",\"authors\":\"Dani Glidewell,&nbsp;Jessica E. Beyer,&nbsp;K. David Hambright\",\"doi\":\"10.1016/j.hal.2024.102768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microcystins—common hepatotoxins produced by cyanobacteria—have been detected in a wide range of organisms, though research examining the trophic transfer of microcystins and whether microcystins bioaccumulate or biomagnify in food webs has generated contradictory results. Here, we explored the trophic transfer of microcystins from the herbivorous water flea, <em>Daphnia pulex</em>, to the predatory larvae of a damselfly, <em>Enallagma</em> sp. We tested the hypotheses that microcystins transfer from the tissue of herbivorus zooplankton to that of predatory invertebrates and that these toxins biomagnify across trophic levels. We also assessed the relative contribution of toxin transfer from the gut and tissue of <em>Daphnia pulex</em> to <em>Enallagma</em> sp. We found that microcystins are effectively sequestered in the tissue of <em>Daphnia pulex</em>, and that these sequestered toxins are then transferred to the tissue of <em>Enallagma</em> sp. The contribution of gut contents to toxin transfer was negligible. Contrary to the pattern predicted by biomagnification, we found that the concentration of microcystins decreased with increasing trophic levels. Our results support the hypothesis that microcystins can be transferred trophically, but do not support the hypothesis that microcystins biomagnify from lower to higher trophic levels. Conversly, we observe biodilution in this system. These results have consequences for the impact of microcystins across trophic levels in a changing world with increasing intensity and duration of harmful algal blooms.</div></div>\",\"PeriodicalId\":12897,\"journal\":{\"name\":\"Harmful Algae\",\"volume\":\"141 \",\"pages\":\"Article 102768\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harmful Algae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568988324002014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324002014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微囊藻毒素——由蓝藻细菌产生的常见肝毒素——已经在广泛的生物体中被检测到,尽管研究微囊藻毒素的营养转移以及微囊藻毒素是否在食物网中生物积累或生物放大已经产生了相互矛盾的结果。在这里,我们探索了微囊藻毒素从食草水蚤(Daphnia pulex)到豆蝇(Enallagma sp.)的掠食性幼虫的营养转移。我们验证了微囊藻毒素从食草浮游动物组织转移到掠食性无脊椎动物组织的假设,以及这些毒素在营养水平上的生物放大。我们还评估了毒素从水蚤的肠道和组织转移到蛭形线虫的相对贡献。我们发现微囊藻毒素有效地隔离在水蚤的组织中,这些隔离的毒素随后被转移到蛭形线虫的组织中。肠道内容物对毒素转移的贡献可以忽略不计。与生物放大预测的模式相反,我们发现微囊藻毒素的浓度随着营养水平的增加而下降。我们的研究结果支持微囊藻毒素可以营养转移的假设,但不支持微囊藻毒素从低营养水平向高营养水平生物放大的假设。相反,我们在这个系统中观察到生物稀释。随着有害藻华的强度和持续时间不断增加,这些结果对微囊藻毒素在营养水平上的影响产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microcystins bioaccumulate but do not biomagnify in an experimental aquatic food chain
Microcystins—common hepatotoxins produced by cyanobacteria—have been detected in a wide range of organisms, though research examining the trophic transfer of microcystins and whether microcystins bioaccumulate or biomagnify in food webs has generated contradictory results. Here, we explored the trophic transfer of microcystins from the herbivorous water flea, Daphnia pulex, to the predatory larvae of a damselfly, Enallagma sp. We tested the hypotheses that microcystins transfer from the tissue of herbivorus zooplankton to that of predatory invertebrates and that these toxins biomagnify across trophic levels. We also assessed the relative contribution of toxin transfer from the gut and tissue of Daphnia pulex to Enallagma sp. We found that microcystins are effectively sequestered in the tissue of Daphnia pulex, and that these sequestered toxins are then transferred to the tissue of Enallagma sp. The contribution of gut contents to toxin transfer was negligible. Contrary to the pattern predicted by biomagnification, we found that the concentration of microcystins decreased with increasing trophic levels. Our results support the hypothesis that microcystins can be transferred trophically, but do not support the hypothesis that microcystins biomagnify from lower to higher trophic levels. Conversly, we observe biodilution in this system. These results have consequences for the impact of microcystins across trophic levels in a changing world with increasing intensity and duration of harmful algal blooms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Harmful Algae
Harmful Algae 生物-海洋与淡水生物学
CiteScore
12.50
自引率
15.20%
发文量
122
审稿时长
7.5 months
期刊介绍: This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.
期刊最新文献
Editorial Board Intraspecific genetic diversity with unrestricted gene flow in the domoic acid-producing diatom Nitzschia navis-varingica (Bacillariophyceae) from the Western Pacific Metabolic transformation of paralytic shellfish toxins in the mussel Mytilus galloprovincialis under different exposure modes Target-oriented element activation and functional group synthesis lead to high quality modified clay for Prorocentrum donghaiense control Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1