基于三维烧结模型的颗粒形状对桩体性能影响的数值与实验研究

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-11-25 DOI:10.1016/j.powtec.2024.120496
Meng Li , Yaowei Yu , Henrik Saxén
{"title":"基于三维烧结模型的颗粒形状对桩体性能影响的数值与实验研究","authors":"Meng Li ,&nbsp;Yaowei Yu ,&nbsp;Henrik Saxén","doi":"10.1016/j.powtec.2024.120496","DOIUrl":null,"url":null,"abstract":"<div><div>The research described in this paper studies the effect of particle shape on pile properties such as pile shape, repose angle and porosity through Discrete Element Method (DEM) simulation and small-scale experiments. An actual sinter particle was used as a template, with a three-dimensional (3D) model of it reconstructed from two-dimensional images using the close-range photogrammetry method. This 3D model was then employed to produce 3D-printed particles for experiments and to generate multi-sphere particles for simulations. The key contact parameters of the 3D-printed particles were obtained from experimental measurements and used for pile formation simulations. The results demonstrate that particle shape has a significant impact on the formation and structure of piles. In simulations with eliminated rolling friction coefficient, the repose angle changes significantly initially when the particles transition from sphere to more complex shapes. At growing shape complexity the effect on the pile structures eventually becomes negligible. In bulk-calibrated simulations, porosity exhibits a non-monotonic trend with changes in sphericity. The porosity of particles with sphericity most similar to sinter shows the greatest consistency with experimental porosity. The findings suggest that particle shape has a critical influence on the properties of piles, and the complexity of particle shape has a profound impact on particle behaviour.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"452 ","pages":"Article 120496"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental study of particle shape effect on pile properties based on a 3D sinter model\",\"authors\":\"Meng Li ,&nbsp;Yaowei Yu ,&nbsp;Henrik Saxén\",\"doi\":\"10.1016/j.powtec.2024.120496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research described in this paper studies the effect of particle shape on pile properties such as pile shape, repose angle and porosity through Discrete Element Method (DEM) simulation and small-scale experiments. An actual sinter particle was used as a template, with a three-dimensional (3D) model of it reconstructed from two-dimensional images using the close-range photogrammetry method. This 3D model was then employed to produce 3D-printed particles for experiments and to generate multi-sphere particles for simulations. The key contact parameters of the 3D-printed particles were obtained from experimental measurements and used for pile formation simulations. The results demonstrate that particle shape has a significant impact on the formation and structure of piles. In simulations with eliminated rolling friction coefficient, the repose angle changes significantly initially when the particles transition from sphere to more complex shapes. At growing shape complexity the effect on the pile structures eventually becomes negligible. In bulk-calibrated simulations, porosity exhibits a non-monotonic trend with changes in sphericity. The porosity of particles with sphericity most similar to sinter shows the greatest consistency with experimental porosity. The findings suggest that particle shape has a critical influence on the properties of piles, and the complexity of particle shape has a profound impact on particle behaviour.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"452 \",\"pages\":\"Article 120496\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024011409\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024011409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文通过离散元法(DEM)模拟和小尺度试验研究了颗粒形状对桩形、休止角和孔隙度等桩性的影响。以实际烧结颗粒为模板,利用近景摄影测量法从二维图像重建烧结颗粒的三维模型。然后利用该3D模型生成用于实验的3D打印颗粒,并生成用于模拟的多球体颗粒。通过实验测量获得了3d打印颗粒的关键接触参数,并将其用于成桩模拟。结果表明,颗粒形状对桩的形成和结构有显著影响。在消除滚动摩擦系数的模拟中,当颗粒从球形过渡到更复杂的形状时,休止角开始发生明显变化。随着形状复杂性的增加,对桩结构的影响最终可以忽略不计。在体积校准模拟中,孔隙度随球度的变化呈现非单调趋势。球形度与烧结矿最相似的颗粒孔隙率与实验孔隙率的一致性最大。研究结果表明,颗粒形状对桩的性能有重要影响,颗粒形状的复杂性对颗粒的行为有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and experimental study of particle shape effect on pile properties based on a 3D sinter model
The research described in this paper studies the effect of particle shape on pile properties such as pile shape, repose angle and porosity through Discrete Element Method (DEM) simulation and small-scale experiments. An actual sinter particle was used as a template, with a three-dimensional (3D) model of it reconstructed from two-dimensional images using the close-range photogrammetry method. This 3D model was then employed to produce 3D-printed particles for experiments and to generate multi-sphere particles for simulations. The key contact parameters of the 3D-printed particles were obtained from experimental measurements and used for pile formation simulations. The results demonstrate that particle shape has a significant impact on the formation and structure of piles. In simulations with eliminated rolling friction coefficient, the repose angle changes significantly initially when the particles transition from sphere to more complex shapes. At growing shape complexity the effect on the pile structures eventually becomes negligible. In bulk-calibrated simulations, porosity exhibits a non-monotonic trend with changes in sphericity. The porosity of particles with sphericity most similar to sinter shows the greatest consistency with experimental porosity. The findings suggest that particle shape has a critical influence on the properties of piles, and the complexity of particle shape has a profound impact on particle behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Graphical abstract TOC Study of the CO2 absorption with K2CO3 sorbents in gas-solid fluidized beds based on second-order moment model An advanced calibration technique for contact parameters in ball milling DEM simulations Investigation on spreading behavior and influencing parameters of particle-droplet collision Mesoscopic flow simulation to understand the percolation through fine-ground electronic waste particle bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1