cu掺杂CoFe2O4纳米晶体的结构、形态、光电和磁性综合分析

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-11-29 DOI:10.1016/j.apt.2024.104748
Anchal , Sarita , Narendra Jakhar , P.A. Alvi , B.L. Choudhary
{"title":"cu掺杂CoFe2O4纳米晶体的结构、形态、光电和磁性综合分析","authors":"Anchal ,&nbsp;Sarita ,&nbsp;Narendra Jakhar ,&nbsp;P.A. Alvi ,&nbsp;B.L. Choudhary","doi":"10.1016/j.apt.2024.104748","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this research is to fabricate nanocrystalline <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span> materials, where x takes values of 0.1, 0.3, and 0.5, and to analyse how their structural, morphological, optoelectronic, vibrational, and magnetic properties change with varying levels of Cu<sup>2+</sup> doping. The preparation of copper-doped cobalt ferrite samples was conducted using the sol–gel method, with citric acid serving as a chelating agent. Powder X-ray diffraction measurements were conducted to identify the phase and structural attributes of the synthesized copper-doped cobalt ferrite. The Rietveld refinement clearly indicates the single-phase cubic structure, characterized by the Fd-3 m space group. The Debye Scherrer formula was used for the calculation of the crystallite size and it was discovered that the average crystallite size varied from ∼ 4.5 to 5.4 nm (which is less than 10 nm) as the doping concentration of Cu<sup>2+</sup> was increased. For the surface morphological studies, Field Emission Scanning Electron Microscopy (FESEM) was used, which suggest that all samples are well prepared and are spherical in nature. EDAX analysis validated the elemental composition with appropriate doping in crystalline samples of <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>. The existence of different chemical bonds has been verified by the Fourier Transform Infrared Rays (FTIR) Spectroscopy. The Raman spectra analysis indicated the existence of various vibrational modes within the sample, revealing the presence of four distinct Raman modes: A1g, Eg, and 2 T2g. Further, the Photoluminescence spectroscopy (PL) was utilized to explore the luminescent properties of the synthesized sample. The optical characteristics was studied using UV–Visible spectroscopy and it was observed that with an increase in the Cu<sup>2+</sup> concentration, the band gap decreased from 2.466 eV to 2.299 eV. X-ray photoelectron spectroscopy (XPS) was used to analyse the chemical states of the elements present in <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span> nanoparticles. Furthermore, the magnetic characteristics of the synthesized copper-doped cobalt nanoferrites were examined using a Vibrating Sample Magnetometer (VSM). The hysteresis curves demonstrated low coercivity (H<sub>c</sub>) and negligible remanent magnetization (M<sub>r</sub>), suggesting the presence of superparamagnetic behavior at room temperature.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 1","pages":"Article 104748"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of Cu-doped CoFe2O4 nanocrystals: Structural, morphological, optoelectronic, and magnetic properties\",\"authors\":\"Anchal ,&nbsp;Sarita ,&nbsp;Narendra Jakhar ,&nbsp;P.A. Alvi ,&nbsp;B.L. Choudhary\",\"doi\":\"10.1016/j.apt.2024.104748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this research is to fabricate nanocrystalline <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span> materials, where x takes values of 0.1, 0.3, and 0.5, and to analyse how their structural, morphological, optoelectronic, vibrational, and magnetic properties change with varying levels of Cu<sup>2+</sup> doping. The preparation of copper-doped cobalt ferrite samples was conducted using the sol–gel method, with citric acid serving as a chelating agent. Powder X-ray diffraction measurements were conducted to identify the phase and structural attributes of the synthesized copper-doped cobalt ferrite. The Rietveld refinement clearly indicates the single-phase cubic structure, characterized by the Fd-3 m space group. The Debye Scherrer formula was used for the calculation of the crystallite size and it was discovered that the average crystallite size varied from ∼ 4.5 to 5.4 nm (which is less than 10 nm) as the doping concentration of Cu<sup>2+</sup> was increased. For the surface morphological studies, Field Emission Scanning Electron Microscopy (FESEM) was used, which suggest that all samples are well prepared and are spherical in nature. EDAX analysis validated the elemental composition with appropriate doping in crystalline samples of <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>. The existence of different chemical bonds has been verified by the Fourier Transform Infrared Rays (FTIR) Spectroscopy. The Raman spectra analysis indicated the existence of various vibrational modes within the sample, revealing the presence of four distinct Raman modes: A1g, Eg, and 2 T2g. Further, the Photoluminescence spectroscopy (PL) was utilized to explore the luminescent properties of the synthesized sample. The optical characteristics was studied using UV–Visible spectroscopy and it was observed that with an increase in the Cu<sup>2+</sup> concentration, the band gap decreased from 2.466 eV to 2.299 eV. X-ray photoelectron spectroscopy (XPS) was used to analyse the chemical states of the elements present in <span><math><mrow><msub><mrow><mi>C</mi><mi>u</mi></mrow><mi>x</mi></msub><msub><mrow><mi>C</mi><mi>o</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span> nanoparticles. Furthermore, the magnetic characteristics of the synthesized copper-doped cobalt nanoferrites were examined using a Vibrating Sample Magnetometer (VSM). The hysteresis curves demonstrated low coercivity (H<sub>c</sub>) and negligible remanent magnetization (M<sub>r</sub>), suggesting the presence of superparamagnetic behavior at room temperature.</div></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"36 1\",\"pages\":\"Article 104748\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124004254\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124004254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是制备纳米CuxCo1-xFe2O4材料,其中x取值为0.1,0.3和0.5,并分析其结构,形态,光电,振动和磁性能随Cu2+掺杂水平的变化。以柠檬酸为螯合剂,采用溶胶-凝胶法制备了掺杂铜的钴铁氧体样品。采用粉末x射线衍射法对合成的铜掺杂钴铁氧体进行了物相和结构表征。Rietveld细化清楚地表明单相立方结构,以fd - 3m空间群为特征。采用Debye Scherrer公式计算晶体尺寸,发现随着Cu2+掺杂浓度的增加,晶体的平均尺寸在~ 4.5 ~ 5.4 nm(小于10 nm)之间变化。利用场发射扫描电镜(FESEM)对样品进行了表面形貌研究,结果表明样品制备良好,呈球形。EDAX分析证实了CuxCo1-xFe2O4晶体样品中适当掺杂的元素组成。傅里叶变换红外光谱(FTIR)证实了不同化学键的存在。拉曼光谱分析表明样品中存在多种振动模式,揭示了四种不同的拉曼模式:A1g, Eg和2t2g。进一步,利用光致发光光谱(PL)研究了合成样品的发光特性。利用紫外可见光谱研究了该材料的光学特性,发现随着Cu2+浓度的增加,带隙从2.466 eV减小到2.299 eV。利用x射线光电子能谱(XPS)分析了CuxCo1-xFe2O4纳米颗粒中元素的化学状态。此外,利用振动样品磁强计(VSM)检测了合成的铜掺杂钴纳米铁素体的磁性。磁滞曲线显示出低矫顽力(Hc)和可忽略的剩余磁化强度(Mr),表明在室温下存在超顺磁行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive analysis of Cu-doped CoFe2O4 nanocrystals: Structural, morphological, optoelectronic, and magnetic properties
The aim of this research is to fabricate nanocrystalline CuxCo1-xFe2O4 materials, where x takes values of 0.1, 0.3, and 0.5, and to analyse how their structural, morphological, optoelectronic, vibrational, and magnetic properties change with varying levels of Cu2+ doping. The preparation of copper-doped cobalt ferrite samples was conducted using the sol–gel method, with citric acid serving as a chelating agent. Powder X-ray diffraction measurements were conducted to identify the phase and structural attributes of the synthesized copper-doped cobalt ferrite. The Rietveld refinement clearly indicates the single-phase cubic structure, characterized by the Fd-3 m space group. The Debye Scherrer formula was used for the calculation of the crystallite size and it was discovered that the average crystallite size varied from ∼ 4.5 to 5.4 nm (which is less than 10 nm) as the doping concentration of Cu2+ was increased. For the surface morphological studies, Field Emission Scanning Electron Microscopy (FESEM) was used, which suggest that all samples are well prepared and are spherical in nature. EDAX analysis validated the elemental composition with appropriate doping in crystalline samples of CuxCo1-xFe2O4. The existence of different chemical bonds has been verified by the Fourier Transform Infrared Rays (FTIR) Spectroscopy. The Raman spectra analysis indicated the existence of various vibrational modes within the sample, revealing the presence of four distinct Raman modes: A1g, Eg, and 2 T2g. Further, the Photoluminescence spectroscopy (PL) was utilized to explore the luminescent properties of the synthesized sample. The optical characteristics was studied using UV–Visible spectroscopy and it was observed that with an increase in the Cu2+ concentration, the band gap decreased from 2.466 eV to 2.299 eV. X-ray photoelectron spectroscopy (XPS) was used to analyse the chemical states of the elements present in CuxCo1-xFe2O4 nanoparticles. Furthermore, the magnetic characteristics of the synthesized copper-doped cobalt nanoferrites were examined using a Vibrating Sample Magnetometer (VSM). The hysteresis curves demonstrated low coercivity (Hc) and negligible remanent magnetization (Mr), suggesting the presence of superparamagnetic behavior at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Impact of acid surface pretreatment on the aggregation and flotation behavior of micro-fine ilmenite and its functional mechanism Comparative study of powder characteristics and mechanical properties of Al2024 nanocomposites reinforced with carbon-based additives Study on the hybrid explosion mechanism of multicomponent combustible gas-coal dust in a coal spontaneous combustion environment Comparison of impact and compression stress in single particle breakage phenomena of multi-component systems Effects of mineral species transformation driven by surface dielectric barrier discharge plasma modification on the flotation performances: Perspective of critical oxidation degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1