PEM水电解中的机器学习:产氢和操作参数的研究

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-27 DOI:10.1016/j.compchemeng.2024.108954
Ibrahim Shomope , Amani Al-Othman , Muhammad Tawalbeh , Hussam Alshraideh , Fares Almomani
{"title":"PEM水电解中的机器学习:产氢和操作参数的研究","authors":"Ibrahim Shomope ,&nbsp;Amani Al-Othman ,&nbsp;Muhammad Tawalbeh ,&nbsp;Hussam Alshraideh ,&nbsp;Fares Almomani","doi":"10.1016/j.compchemeng.2024.108954","DOIUrl":null,"url":null,"abstract":"<div><div>Proton exchange membrane water electrolysis (PEMWE) powered by renewable energy stands out as a promising technology for the sustainable production of high-purity hydrogen. This study employed three machine learning (ML) algorithms, random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGBoost), to predict hydrogen production in PEMWE. Model performance was evaluated using root mean squared error (RMSE), coefficient of determination (<em>R²</em>), and mean absolute error (MAE) metrics. The top-performing models, RF and XGBoost, were further refined through hyperparameter tuning. The final models demonstrated high reliability in predicting hydrogen production rates, with RF consistently outperforming XGBoost. The RF model achieved a predictive accuracy of <em>R²</em> = 0.9898, RMSE = 19.99 mL/min, and MAE = 10.41 mL/min, while the XGBoost model achieved <em>R²</em> = 0.9894, RMSE = 20.43 mL/min, and MAE = 11.50 mL/min. Partial dependency plots (PDPs) emphasized the critical role of optimizing both cell voltage and current to maximize hydrogen production in PEMWE. These insights provide valuable guidance for operational adjustments, ensuring optimal system performance for high efficiency and productivity. The study suggests further research on the impact of parameters like temperature and power density on hydrogen production, incorporating them for better optimization.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108954"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning in PEM water electrolysis: A study of hydrogen production and operating parameters\",\"authors\":\"Ibrahim Shomope ,&nbsp;Amani Al-Othman ,&nbsp;Muhammad Tawalbeh ,&nbsp;Hussam Alshraideh ,&nbsp;Fares Almomani\",\"doi\":\"10.1016/j.compchemeng.2024.108954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proton exchange membrane water electrolysis (PEMWE) powered by renewable energy stands out as a promising technology for the sustainable production of high-purity hydrogen. This study employed three machine learning (ML) algorithms, random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGBoost), to predict hydrogen production in PEMWE. Model performance was evaluated using root mean squared error (RMSE), coefficient of determination (<em>R²</em>), and mean absolute error (MAE) metrics. The top-performing models, RF and XGBoost, were further refined through hyperparameter tuning. The final models demonstrated high reliability in predicting hydrogen production rates, with RF consistently outperforming XGBoost. The RF model achieved a predictive accuracy of <em>R²</em> = 0.9898, RMSE = 19.99 mL/min, and MAE = 10.41 mL/min, while the XGBoost model achieved <em>R²</em> = 0.9894, RMSE = 20.43 mL/min, and MAE = 11.50 mL/min. Partial dependency plots (PDPs) emphasized the critical role of optimizing both cell voltage and current to maximize hydrogen production in PEMWE. These insights provide valuable guidance for operational adjustments, ensuring optimal system performance for high efficiency and productivity. The study suggests further research on the impact of parameters like temperature and power density on hydrogen production, incorporating them for better optimization.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108954\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003727\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

以可再生能源为动力的质子交换膜电解水(PEMWE)是一种很有前途的可持续生产高纯度氢的技术。本研究采用随机森林(RF)、支持向量机(SVM)和极限梯度提升(XGBoost)三种机器学习(ML)算法来预测PEMWE的氢气产量。使用均方根误差(RMSE)、决定系数(R²)和平均绝对误差(MAE)指标评估模型的性能。表现最好的模型RF和XGBoost通过超参数调优进一步完善。最终模型在预测产氢率方面表现出很高的可靠性,其中RF的表现始终优于XGBoost。RF模型的预测精度为R²= 0.9898,RMSE = 19.99 mL/min, MAE = 10.41 mL/min; XGBoost模型的预测精度为R²= 0.9894,RMSE = 20.43 mL/min, MAE = 11.50 mL/min。部分依赖图(pdp)强调了优化电池电压和电流对最大化PEMWE制氢的关键作用。这些见解为操作调整提供了有价值的指导,确保了最佳的系统性能,以实现高效率和生产力。该研究建议进一步研究温度和功率密度等参数对氢气生产的影响,并将其纳入更好的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning in PEM water electrolysis: A study of hydrogen production and operating parameters
Proton exchange membrane water electrolysis (PEMWE) powered by renewable energy stands out as a promising technology for the sustainable production of high-purity hydrogen. This study employed three machine learning (ML) algorithms, random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGBoost), to predict hydrogen production in PEMWE. Model performance was evaluated using root mean squared error (RMSE), coefficient of determination (), and mean absolute error (MAE) metrics. The top-performing models, RF and XGBoost, were further refined through hyperparameter tuning. The final models demonstrated high reliability in predicting hydrogen production rates, with RF consistently outperforming XGBoost. The RF model achieved a predictive accuracy of = 0.9898, RMSE = 19.99 mL/min, and MAE = 10.41 mL/min, while the XGBoost model achieved = 0.9894, RMSE = 20.43 mL/min, and MAE = 11.50 mL/min. Partial dependency plots (PDPs) emphasized the critical role of optimizing both cell voltage and current to maximize hydrogen production in PEMWE. These insights provide valuable guidance for operational adjustments, ensuring optimal system performance for high efficiency and productivity. The study suggests further research on the impact of parameters like temperature and power density on hydrogen production, incorporating them for better optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1