基于镀金pcf的SPR传感器的超灵敏折射率检测

IF 4.1 Q1 CHEMISTRY, ANALYTICAL Talanta Open Pub Date : 2024-12-01 DOI:10.1016/j.talo.2024.100384
Amit Das , Md Abu Huraiya , Vinoth Raj R , Hitoshi Tabata , Sankar Ganesh Ramaraj
{"title":"基于镀金pcf的SPR传感器的超灵敏折射率检测","authors":"Amit Das ,&nbsp;Md Abu Huraiya ,&nbsp;Vinoth Raj R ,&nbsp;Hitoshi Tabata ,&nbsp;Sankar Ganesh Ramaraj","doi":"10.1016/j.talo.2024.100384","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative photonic crystal fiber (PCF) surface plasmon resonance (SPR) biosensor, notable for its sophisticated design and exceptional performance, utilizing gold as the plasmonic material. The sensor offers an expanded detection range and outstanding sensitivity, operating within a refractive index range of 1.27 to 1.43. It achieves a remarkable wavelength sensitivity of 157,000 nm/RIU with a resolution of 6.37 × 10⁻⁷ RIU and an amplitude sensitivity of 1263 RIU⁻¹ with a resolution of 7.92 × 10⁻⁵ RIU. Additionally, it boasts a figure of merit (FOM) of 1648, underscoring its superior capability in detecting biomolecular interactions. The suggested design is numerically analysed using the finite element method (FEM) of a gold-coated PCF-based SPR sensor designed for detecting changes in the refractive index (RI) within the range of 1.27 to 1.43. This range is related to various biological and chemical samples, including proteins, DNA, and biochemical analytes typically used in biomedical diagnostics and environmental monitoring. The integration of gold plasmonic elements enhances the sensor's sensitivity and stability while extending its detection capabilities across a broader range, allowing for versatile applications in biomedicine, environmental monitoring, and beyond. This research significantly advances optical biosensing technologies by offering a robust platform for high-precision detection across diverse domains. The sensor's advanced design and performance make it an invaluable tool for applications requiring accurate and reliable detection, driving innovations in areas such as biomedical diagnostics, environmental monitoring, food safety, and pharmaceutical quality control.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100384"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-sensitive refractive index detection with gold-coated PCF-based SPR sensor\",\"authors\":\"Amit Das ,&nbsp;Md Abu Huraiya ,&nbsp;Vinoth Raj R ,&nbsp;Hitoshi Tabata ,&nbsp;Sankar Ganesh Ramaraj\",\"doi\":\"10.1016/j.talo.2024.100384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an innovative photonic crystal fiber (PCF) surface plasmon resonance (SPR) biosensor, notable for its sophisticated design and exceptional performance, utilizing gold as the plasmonic material. The sensor offers an expanded detection range and outstanding sensitivity, operating within a refractive index range of 1.27 to 1.43. It achieves a remarkable wavelength sensitivity of 157,000 nm/RIU with a resolution of 6.37 × 10⁻⁷ RIU and an amplitude sensitivity of 1263 RIU⁻¹ with a resolution of 7.92 × 10⁻⁵ RIU. Additionally, it boasts a figure of merit (FOM) of 1648, underscoring its superior capability in detecting biomolecular interactions. The suggested design is numerically analysed using the finite element method (FEM) of a gold-coated PCF-based SPR sensor designed for detecting changes in the refractive index (RI) within the range of 1.27 to 1.43. This range is related to various biological and chemical samples, including proteins, DNA, and biochemical analytes typically used in biomedical diagnostics and environmental monitoring. The integration of gold plasmonic elements enhances the sensor's sensitivity and stability while extending its detection capabilities across a broader range, allowing for versatile applications in biomedicine, environmental monitoring, and beyond. This research significantly advances optical biosensing technologies by offering a robust platform for high-precision detection across diverse domains. The sensor's advanced design and performance make it an invaluable tool for applications requiring accurate and reliable detection, driving innovations in areas such as biomedical diagnostics, environmental monitoring, food safety, and pharmaceutical quality control.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"10 \",\"pages\":\"Article 100384\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种创新的光子晶体光纤(PCF)表面等离子体共振(SPR)生物传感器,以其复杂的设计和卓越的性能而闻名,利用金作为等离子体材料。该传感器提供了扩展的检测范围和出色的灵敏度,在1.27至1.43的折射率范围内工作。它的波长灵敏度为157,000 nm/RIU,分辨率为6.37 × 10⁻RIU,振幅灵敏度为1263 RIU,分辨率为7.92 × 10⁻RIU。此外,它还拥有1648的优点值(FOM),强调了它在检测生物分子相互作用方面的卓越能力。采用有限元法对设计用于检测1.27 ~ 1.43范围内折射率变化的镀金pcf基SPR传感器进行了数值分析。该范围与各种生物和化学样品有关,包括蛋白质,DNA和生物医学诊断和环境监测中通常使用的生化分析物。金等离子体元件的集成增强了传感器的灵敏度和稳定性,同时将其检测能力扩展到更广泛的范围,允许在生物医学,环境监测等领域的多种应用。该研究通过为不同领域的高精度检测提供强大的平台,显著推进了光学生物传感技术。该传感器的先进设计和性能使其成为需要准确可靠检测的应用的宝贵工具,推动生物医学诊断,环境监测,食品安全和药品质量控制等领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-sensitive refractive index detection with gold-coated PCF-based SPR sensor
This study introduces an innovative photonic crystal fiber (PCF) surface plasmon resonance (SPR) biosensor, notable for its sophisticated design and exceptional performance, utilizing gold as the plasmonic material. The sensor offers an expanded detection range and outstanding sensitivity, operating within a refractive index range of 1.27 to 1.43. It achieves a remarkable wavelength sensitivity of 157,000 nm/RIU with a resolution of 6.37 × 10⁻⁷ RIU and an amplitude sensitivity of 1263 RIU⁻¹ with a resolution of 7.92 × 10⁻⁵ RIU. Additionally, it boasts a figure of merit (FOM) of 1648, underscoring its superior capability in detecting biomolecular interactions. The suggested design is numerically analysed using the finite element method (FEM) of a gold-coated PCF-based SPR sensor designed for detecting changes in the refractive index (RI) within the range of 1.27 to 1.43. This range is related to various biological and chemical samples, including proteins, DNA, and biochemical analytes typically used in biomedical diagnostics and environmental monitoring. The integration of gold plasmonic elements enhances the sensor's sensitivity and stability while extending its detection capabilities across a broader range, allowing for versatile applications in biomedicine, environmental monitoring, and beyond. This research significantly advances optical biosensing technologies by offering a robust platform for high-precision detection across diverse domains. The sensor's advanced design and performance make it an invaluable tool for applications requiring accurate and reliable detection, driving innovations in areas such as biomedical diagnostics, environmental monitoring, food safety, and pharmaceutical quality control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
期刊最新文献
Ultra-sensitive refractive index detection with gold-coated PCF-based SPR sensor High-sensitive ethanol gas sensor using Ag modified ZnO nanosheets High-throughput detection of bottle materials of agave spirits using 3D-printed cartridges for paper-spray ionization mass spectrometry MCM-41 based dispersive micro-solid phase extraction of selected cephalosporin antibiotic residues from water samples prior to liquid chromatographic quantification Bone fragility in Type 2 Diabetes Mellitus. Influence of sex and cardiovascular disease in a pilot study using metabolomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1