Akhil Ahmed, Ehecatl Antonio del Rio-Chanona, Mehmet Mercangöz
{"title":"逆向鲁棒实时优化与控制","authors":"Akhil Ahmed, Ehecatl Antonio del Rio-Chanona, Mehmet Mercangöz","doi":"10.1016/j.compchemeng.2024.108930","DOIUrl":null,"url":null,"abstract":"<div><div>Real-Time Optimization (RTO) plays a crucial role in process operation by determining optimal set-points for lower-level controllers. However, tracking these set-points can be challenging at the control layer due to disturbances, measurement noise, and actuator limitations, leading to a mismatch between expected and achieved RTO benefits. To address this, we present the Adversarially Robust Real-Time Optimization and Control (ARRTOC) algorithm. ARRTOC addresses this issue by finding set-points which are both optimal and inherently robust to implementation errors at the control layers. ARRTOC draws inspiration from adversarial machine learning, offering a novel constrained Adversarially Robust Optimization (ARO) solution applied to the RTO layer. We present several case studies to validate our approach, including a bioreactor, a multi-loop evaporator process, and scenarios involving plant-model mismatch. These studies demonstrate that ARRTOC can improve realized RTO benefits by as much as 50% compared to traditional RTO formulations that do not account for control layer performance.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108930"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARRTOC: Adversarially Robust Real-Time Optimization and Control\",\"authors\":\"Akhil Ahmed, Ehecatl Antonio del Rio-Chanona, Mehmet Mercangöz\",\"doi\":\"10.1016/j.compchemeng.2024.108930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-Time Optimization (RTO) plays a crucial role in process operation by determining optimal set-points for lower-level controllers. However, tracking these set-points can be challenging at the control layer due to disturbances, measurement noise, and actuator limitations, leading to a mismatch between expected and achieved RTO benefits. To address this, we present the Adversarially Robust Real-Time Optimization and Control (ARRTOC) algorithm. ARRTOC addresses this issue by finding set-points which are both optimal and inherently robust to implementation errors at the control layers. ARRTOC draws inspiration from adversarial machine learning, offering a novel constrained Adversarially Robust Optimization (ARO) solution applied to the RTO layer. We present several case studies to validate our approach, including a bioreactor, a multi-loop evaporator process, and scenarios involving plant-model mismatch. These studies demonstrate that ARRTOC can improve realized RTO benefits by as much as 50% compared to traditional RTO formulations that do not account for control layer performance.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108930\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542400348X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542400348X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ARRTOC: Adversarially Robust Real-Time Optimization and Control
Real-Time Optimization (RTO) plays a crucial role in process operation by determining optimal set-points for lower-level controllers. However, tracking these set-points can be challenging at the control layer due to disturbances, measurement noise, and actuator limitations, leading to a mismatch between expected and achieved RTO benefits. To address this, we present the Adversarially Robust Real-Time Optimization and Control (ARRTOC) algorithm. ARRTOC addresses this issue by finding set-points which are both optimal and inherently robust to implementation errors at the control layers. ARRTOC draws inspiration from adversarial machine learning, offering a novel constrained Adversarially Robust Optimization (ARO) solution applied to the RTO layer. We present several case studies to validate our approach, including a bioreactor, a multi-loop evaporator process, and scenarios involving plant-model mismatch. These studies demonstrate that ARRTOC can improve realized RTO benefits by as much as 50% compared to traditional RTO formulations that do not account for control layer performance.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.