Jadranka Milikić , Ana Nastasić , Sara Knežević , Lazar Rakočević , Stevan Stojadinović , Dalibor Stanković , Biljana Šljukić
{"title":"碱性介质中氧电极反应的高效纳米ZnM/rGO (M = Ni, Cu和Fe)电催化剂","authors":"Jadranka Milikić , Ana Nastasić , Sara Knežević , Lazar Rakočević , Stevan Stojadinović , Dalibor Stanković , Biljana Šljukić","doi":"10.1016/j.ijhydene.2024.11.406","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, zinc with nickel, copper, and iron was deposited on reduced graphene oxide (rGO) (ZnM/rGO, M = Cu, Ni, Fe) and examined as novel bifunctional electrocatalysts for oxygen evolution (OER) and oxygen reduction (ORR) reaction in alkaline media. Fourier-transform infrared and X-ray photoelectron spectroscopy, X-ray powder diffraction analysis, transmission, and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used for the examination of structural and morphological properties of ZnM/rGO. ZnFe/rGO showed the lowest OER overpotential and Tafel slope, the highest OER current density with the lowest charge-transfer resistance. Furthermore, ORR at ZnFe/rGO proceeds by mixed 2e/4e mechanism, and by 2e mechanism at the other materials. Still, ZnCu/rGO showed the most positive onset potential and low Tafel slope during ORR. Hence, ZnFe/rGO presents the best OER activity with further improvements needed in terms of its ORR performance to reach full potential for rechargeable metal-air batteries and unitized regenerative fuel cells.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 247-258"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient nano-size ZnM/rGO (M = Ni, Cu, and Fe) electrocatalysts for oxygen electrode reactions in alkaline media\",\"authors\":\"Jadranka Milikić , Ana Nastasić , Sara Knežević , Lazar Rakočević , Stevan Stojadinović , Dalibor Stanković , Biljana Šljukić\",\"doi\":\"10.1016/j.ijhydene.2024.11.406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, zinc with nickel, copper, and iron was deposited on reduced graphene oxide (rGO) (ZnM/rGO, M = Cu, Ni, Fe) and examined as novel bifunctional electrocatalysts for oxygen evolution (OER) and oxygen reduction (ORR) reaction in alkaline media. Fourier-transform infrared and X-ray photoelectron spectroscopy, X-ray powder diffraction analysis, transmission, and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used for the examination of structural and morphological properties of ZnM/rGO. ZnFe/rGO showed the lowest OER overpotential and Tafel slope, the highest OER current density with the lowest charge-transfer resistance. Furthermore, ORR at ZnFe/rGO proceeds by mixed 2e/4e mechanism, and by 2e mechanism at the other materials. Still, ZnCu/rGO showed the most positive onset potential and low Tafel slope during ORR. Hence, ZnFe/rGO presents the best OER activity with further improvements needed in terms of its ORR performance to reach full potential for rechargeable metal-air batteries and unitized regenerative fuel cells.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"97 \",\"pages\":\"Pages 247-258\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924051024\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文将锌、镍、铜和铁沉积在还原氧化石墨烯(rGO)上(ZnM/rGO, M = Cu, Ni, Fe),并研究了在碱性介质中作为析氧(OER)和氧还原(ORR)反应的新型双功能电催化剂。采用傅里叶变换红外和x射线光电子能谱、x射线粉末衍射分析、透射电镜和能量色散x射线扫描电镜对ZnM/rGO的结构和形态进行了表征。ZnFe/rGO表现出最低的OER过电位和Tafel斜率,最高的OER电流密度和最低的电荷转移电阻。此外,ZnFe/rGO的ORR以混合2e/4e机制进行,其他材料的ORR以2e机制进行。然而,在ORR期间,ZnCu/rGO表现出最积极的开始电位和较低的Tafel斜率。因此,ZnFe/rGO具有最佳的OER活性,需要进一步改进其ORR性能,以充分发挥可充电金属-空气电池和组合式再生燃料电池的潜力。
Efficient nano-size ZnM/rGO (M = Ni, Cu, and Fe) electrocatalysts for oxygen electrode reactions in alkaline media
Herein, zinc with nickel, copper, and iron was deposited on reduced graphene oxide (rGO) (ZnM/rGO, M = Cu, Ni, Fe) and examined as novel bifunctional electrocatalysts for oxygen evolution (OER) and oxygen reduction (ORR) reaction in alkaline media. Fourier-transform infrared and X-ray photoelectron spectroscopy, X-ray powder diffraction analysis, transmission, and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used for the examination of structural and morphological properties of ZnM/rGO. ZnFe/rGO showed the lowest OER overpotential and Tafel slope, the highest OER current density with the lowest charge-transfer resistance. Furthermore, ORR at ZnFe/rGO proceeds by mixed 2e/4e mechanism, and by 2e mechanism at the other materials. Still, ZnCu/rGO showed the most positive onset potential and low Tafel slope during ORR. Hence, ZnFe/rGO presents the best OER activity with further improvements needed in terms of its ORR performance to reach full potential for rechargeable metal-air batteries and unitized regenerative fuel cells.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.