水气转换反应制氢:催化剂、动力学和反应机理综述

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-11-28 DOI:10.1016/j.fuproc.2024.108163
Leila Dehimi , Oualid Alioui , Yacine Benguerba , Krishna Kumar Yadav , Javed Khan Bhutto , Ahmed M. Fallatah , Tanuj Shukla , Maha Awjan Alreshidi , Marco Balsamo , Michael Badawi , Alessandro Erto
{"title":"水气转换反应制氢:催化剂、动力学和反应机理综述","authors":"Leila Dehimi ,&nbsp;Oualid Alioui ,&nbsp;Yacine Benguerba ,&nbsp;Krishna Kumar Yadav ,&nbsp;Javed Khan Bhutto ,&nbsp;Ahmed M. Fallatah ,&nbsp;Tanuj Shukla ,&nbsp;Maha Awjan Alreshidi ,&nbsp;Marco Balsamo ,&nbsp;Michael Badawi ,&nbsp;Alessandro Erto","doi":"10.1016/j.fuproc.2024.108163","DOIUrl":null,"url":null,"abstract":"<div><div>The global push towards a hydrogen economy fuels hydrogen production from various sources. A crucial step in enriching hydrogen and reducing CO in syngas derived from carbon-based hydrogen production is the water-gas shift reaction (WGSR). Given the equilibrium-limited nature of WGSR, low temperatures are necessary to reduce carbon monoxide concentrations to the desired level. Traditionally, iron‑chromium (Fe/Cr) and copper‑zinc (Cu/Zn) catalysts have been widely used at high and low temperatures, respectively. Numerous studies have focused on developing optimal WGS catalysts with the desired characteristics and efficiency. This review extensively discusses various catalysts for different stages of WGSR, including low, medium, high-temperature, and sour WGS catalysts. However, understanding the contrast between the redox and associative mechanisms and the nature of intermediates in the WGS pathway remains unclear. A detailed study of the WGSR pathway is imperative to develop highly active and stable catalysts. Various experimental kinetic values and models have also been reported to elucidate the WGSR mechanism at different temperatures. The primary deactivation sources of WGS catalysts have been discussed to highlight recent advances to improve catalyst performance. The contribution of computational methods such as Density Functional Theory (DFT) to developing WGS catalysts is also explored. Furthermore, the review addresses the challenges encountered in the WGSR, and recommendations and conclusions are drawn to guide future research efforts.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108163"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen production by the water-gas shift reaction: A comprehensive review on catalysts, kinetics, and reaction mechanism\",\"authors\":\"Leila Dehimi ,&nbsp;Oualid Alioui ,&nbsp;Yacine Benguerba ,&nbsp;Krishna Kumar Yadav ,&nbsp;Javed Khan Bhutto ,&nbsp;Ahmed M. Fallatah ,&nbsp;Tanuj Shukla ,&nbsp;Maha Awjan Alreshidi ,&nbsp;Marco Balsamo ,&nbsp;Michael Badawi ,&nbsp;Alessandro Erto\",\"doi\":\"10.1016/j.fuproc.2024.108163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global push towards a hydrogen economy fuels hydrogen production from various sources. A crucial step in enriching hydrogen and reducing CO in syngas derived from carbon-based hydrogen production is the water-gas shift reaction (WGSR). Given the equilibrium-limited nature of WGSR, low temperatures are necessary to reduce carbon monoxide concentrations to the desired level. Traditionally, iron‑chromium (Fe/Cr) and copper‑zinc (Cu/Zn) catalysts have been widely used at high and low temperatures, respectively. Numerous studies have focused on developing optimal WGS catalysts with the desired characteristics and efficiency. This review extensively discusses various catalysts for different stages of WGSR, including low, medium, high-temperature, and sour WGS catalysts. However, understanding the contrast between the redox and associative mechanisms and the nature of intermediates in the WGS pathway remains unclear. A detailed study of the WGSR pathway is imperative to develop highly active and stable catalysts. Various experimental kinetic values and models have also been reported to elucidate the WGSR mechanism at different temperatures. The primary deactivation sources of WGS catalysts have been discussed to highlight recent advances to improve catalyst performance. The contribution of computational methods such as Density Functional Theory (DFT) to developing WGS catalysts is also explored. Furthermore, the review addresses the challenges encountered in the WGSR, and recommendations and conclusions are drawn to guide future research efforts.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"267 \",\"pages\":\"Article 108163\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024001334\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

全球对氢经济的推动推动了各种来源的氢生产。在碳基制氢产生的合成气中富集氢和还原CO的关键步骤是水气转换反应(WGSR)。考虑到WGSR的平衡限制性质,低温是将一氧化碳浓度降低到所需水平所必需的。传统上,铁-铬(Fe/Cr)和铜-锌(Cu/Zn)催化剂分别在高温和低温下广泛使用。许多研究都集中在开发具有理想特性和效率的最佳WGS催化剂上。本文综述了不同阶段的WGSR催化剂,包括低、中、高温和酸性WGS催化剂。然而,对氧化还原和结合机制之间的对比以及WGS途径中中间体的性质的理解仍不清楚。对WGSR途径的深入研究是开发高活性、稳定催化剂的必要条件。不同的实验动力学值和模型也被报道来阐明不同温度下WGSR的机理。讨论了WGS催化剂的主要失活源,重点介绍了提高催化剂性能的最新进展。本文还探讨了密度泛函理论(DFT)等计算方法对开发WGS催化剂的贡献。此外,该综述还解决了《世界气候变化研究报告》中遇到的挑战,并提出了指导未来研究工作的建议和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen production by the water-gas shift reaction: A comprehensive review on catalysts, kinetics, and reaction mechanism
The global push towards a hydrogen economy fuels hydrogen production from various sources. A crucial step in enriching hydrogen and reducing CO in syngas derived from carbon-based hydrogen production is the water-gas shift reaction (WGSR). Given the equilibrium-limited nature of WGSR, low temperatures are necessary to reduce carbon monoxide concentrations to the desired level. Traditionally, iron‑chromium (Fe/Cr) and copper‑zinc (Cu/Zn) catalysts have been widely used at high and low temperatures, respectively. Numerous studies have focused on developing optimal WGS catalysts with the desired characteristics and efficiency. This review extensively discusses various catalysts for different stages of WGSR, including low, medium, high-temperature, and sour WGS catalysts. However, understanding the contrast between the redox and associative mechanisms and the nature of intermediates in the WGS pathway remains unclear. A detailed study of the WGSR pathway is imperative to develop highly active and stable catalysts. Various experimental kinetic values and models have also been reported to elucidate the WGSR mechanism at different temperatures. The primary deactivation sources of WGS catalysts have been discussed to highlight recent advances to improve catalyst performance. The contribution of computational methods such as Density Functional Theory (DFT) to developing WGS catalysts is also explored. Furthermore, the review addresses the challenges encountered in the WGSR, and recommendations and conclusions are drawn to guide future research efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Editorial Board Co-pyrolysis of coal-derived sludge and low-rank coal: Thermal behaviour and char yield prediction Transformation of Mg-bearing minerals and its effect on slagging during the high-alkali coal combustion Role of secondary char on the fuel properties and pyrolysis behaviors of hydrochars: Effect of temperature and liquid-solid ratio Hydrogen production by the water-gas shift reaction: A comprehensive review on catalysts, kinetics, and reaction mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1