基于图神经网络的电网运行风险评估

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-11-30 DOI:10.1016/j.apenergy.2024.124793
Yadong Zhang, Pranav M. Karve, Sankaran Mahadevan
{"title":"基于图神经网络的电网运行风险评估","authors":"Yadong Zhang,&nbsp;Pranav M. Karve,&nbsp;Sankaran Mahadevan","doi":"10.1016/j.apenergy.2024.124793","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status or power dispatch decisions. The GNNs are trained using supervised learning to predict the power grid’s aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are considered while generating the inputs for the training data. The outputs in the training data include system-level, zonal and transmission line-level quantities of interest (QoIs). The ground truth of QoIs are obtained by numerically solving deterministic optimization problems (e.g., security-constrained unit commitment) with the same inputs. The GNN predictions are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive optimization algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by enabling quick, high-resolution reliability and risk estimation.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 124793"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural networks for power grid operational risk assessment under evolving unit commitment\",\"authors\":\"Yadong Zhang,&nbsp;Pranav M. Karve,&nbsp;Sankaran Mahadevan\",\"doi\":\"10.1016/j.apenergy.2024.124793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status or power dispatch decisions. The GNNs are trained using supervised learning to predict the power grid’s aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are considered while generating the inputs for the training data. The outputs in the training data include system-level, zonal and transmission line-level quantities of interest (QoIs). The ground truth of QoIs are obtained by numerically solving deterministic optimization problems (e.g., security-constrained unit commitment) with the same inputs. The GNN predictions are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive optimization algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by enabling quick, high-resolution reliability and risk estimation.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"380 \",\"pages\":\"Article 124793\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924021767\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924021767","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在没有关于未来发电机开/关状态或电力调度决策的明确、高分辨率信息的情况下,图神经网络(gnn)在随后几小时内识别电网风险状况的能力。使用监督学习对gnn进行训练,以预测不同电力供需条件下电网的总母线级(区域级或系统级)或单个支路级状态。在生成训练数据的输入时,考虑了随机网格变量(风能/太阳能发电和负载需求)的可变性及其统计相关性。训练数据的输出包括系统级、区域级和传输线级的兴趣量(qoi)。通过数值求解具有相同输入的确定性优化问题(例如,受安全约束的单元承诺),获得qi的基本真理。GNN预测用于提前数小时进行基于采样的可靠性和风险评估,包括区域和系统级(负载减少)以及分支级(过载)故障事件。提出的方法演示了三个合成网格的大小范围从118到2848总线。我们的研究结果表明,gnn能够提供快速准确的qos预测,并且可以作为计算昂贵的优化算法的良好代理。基于GNN的可靠性和风险评估具有优异的准确性,这表明GNN模型可以通过实现快速、高分辨率的可靠性和风险评估,大大提高态势感知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph neural networks for power grid operational risk assessment under evolving unit commitment
This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status or power dispatch decisions. The GNNs are trained using supervised learning to predict the power grid’s aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are considered while generating the inputs for the training data. The outputs in the training data include system-level, zonal and transmission line-level quantities of interest (QoIs). The ground truth of QoIs are obtained by numerically solving deterministic optimization problems (e.g., security-constrained unit commitment) with the same inputs. The GNN predictions are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive optimization algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by enabling quick, high-resolution reliability and risk estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1