智能能源管理:集成系统中基于过程结构的混合神经网络优化调度和经济预测控制

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-11-29 DOI:10.1016/j.apenergy.2024.124965
Long Wu , Xunyuan Yin , Lei Pan , Jinfeng Liu
{"title":"智能能源管理:集成系统中基于过程结构的混合神经网络优化调度和经济预测控制","authors":"Long Wu ,&nbsp;Xunyuan Yin ,&nbsp;Lei Pan ,&nbsp;Jinfeng Liu","doi":"10.1016/j.apenergy.2024.124965","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated energy systems (IESs) are complex prosumers consisting of diverse operating units spanning multiple domains. The tight integration of these units results in varied dynamic characteristics and intricate nonlinear process interactions, making detailed dynamic modeling and successful operational optimization challenging. To address these concerns, we propose a process structure-based hybrid time-series neural network (NN) surrogate to predict the dynamic performance of IESs across multiple time scales. This neural network-based modeling approach develops time-series multi-layer perceptrons (MLPs) for the operating units and integrates them with prior process knowledge about system structure and fundamental dynamics. This integration forms three hybrid NNs – long-term, slow, and fast MLPs – that predict the entire system dynamics across multiple time scales. Leveraging these MLPs, we design an NN-based scheduler and an NN-based economic model predictive control (NEMPC) framework to meet global operational requirements: rapid electrical power responsiveness to operators’ requests, adequate cooling supply to customers, and increased system profitability, while addressing the dynamic time-scale multiplicity present in IESs. The proposed day-ahead scheduler is formulated using the ReLU network-based MLP, which effectively represents IES performance under a broad range of conditions from a long-term perspective. The scheduler is then exactly recast into a mixed-integer linear programming problem for efficient evaluation. The real-time NEMPC, based on slow and fast MLPs, comprises two sequential distributed control agents: a slow NEMPC for the cooling-dominant subsystem with slower transient responses and a fast NEMPC for the power-dominant subsystem with faster responses. These agents collaborate in the decision-making process to achieve dynamic synergy in real time while reducing computational costs. Extensive simulations demonstrate that the developed scheduler and NEMPC schemes outperform their respective benchmark scheduler and controller by about 25% and 40%. Together, they enhance overall system performance by over 70% compared to benchmark approaches.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 124965"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart energy management: Process structure-based hybrid neural networks for optimal scheduling and economic predictive control in integrated systems\",\"authors\":\"Long Wu ,&nbsp;Xunyuan Yin ,&nbsp;Lei Pan ,&nbsp;Jinfeng Liu\",\"doi\":\"10.1016/j.apenergy.2024.124965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated energy systems (IESs) are complex prosumers consisting of diverse operating units spanning multiple domains. The tight integration of these units results in varied dynamic characteristics and intricate nonlinear process interactions, making detailed dynamic modeling and successful operational optimization challenging. To address these concerns, we propose a process structure-based hybrid time-series neural network (NN) surrogate to predict the dynamic performance of IESs across multiple time scales. This neural network-based modeling approach develops time-series multi-layer perceptrons (MLPs) for the operating units and integrates them with prior process knowledge about system structure and fundamental dynamics. This integration forms three hybrid NNs – long-term, slow, and fast MLPs – that predict the entire system dynamics across multiple time scales. Leveraging these MLPs, we design an NN-based scheduler and an NN-based economic model predictive control (NEMPC) framework to meet global operational requirements: rapid electrical power responsiveness to operators’ requests, adequate cooling supply to customers, and increased system profitability, while addressing the dynamic time-scale multiplicity present in IESs. The proposed day-ahead scheduler is formulated using the ReLU network-based MLP, which effectively represents IES performance under a broad range of conditions from a long-term perspective. The scheduler is then exactly recast into a mixed-integer linear programming problem for efficient evaluation. The real-time NEMPC, based on slow and fast MLPs, comprises two sequential distributed control agents: a slow NEMPC for the cooling-dominant subsystem with slower transient responses and a fast NEMPC for the power-dominant subsystem with faster responses. These agents collaborate in the decision-making process to achieve dynamic synergy in real time while reducing computational costs. Extensive simulations demonstrate that the developed scheduler and NEMPC schemes outperform their respective benchmark scheduler and controller by about 25% and 40%. Together, they enhance overall system performance by over 70% compared to benchmark approaches.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"380 \",\"pages\":\"Article 124965\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924023481\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023481","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

综合能源系统是由跨越多个领域的不同操作单元组成的复杂产消系统。这些单元的紧密集成导致了不同的动态特性和复杂的非线性过程相互作用,使得详细的动态建模和成功的操作优化具有挑战性。为了解决这些问题,我们提出了一个基于过程结构的混合时间序列神经网络(NN)代理来预测跨多个时间尺度的ess动态性能。这种基于神经网络的建模方法为操作单元开发了时间序列多层感知器(mlp),并将其与系统结构和基本动力学的先验过程知识相结合。这种集成形成了三种混合神经网络——长期、慢速和快速mlp——预测跨多个时间尺度的整个系统动态。利用这些mlp,我们设计了一个基于神经网络的调度程序和一个基于神经网络的经济模型预测控制(NEMPC)框架,以满足全球运营要求:对运营商请求的快速电力响应,为客户提供充足的冷却供应,提高系统盈利能力,同时解决了ess中存在的动态时间尺度多样性。提出的日前调度程序是使用基于ReLU网络的MLP制定的,从长期角度来看,它有效地代表了IES在广泛条件下的性能。然后将调度程序精确地转换为混合整数线性规划问题,以便有效地进行计算。基于慢速和快速mlp的实时NEMPC包括两个顺序的分布式控制代理:用于具有较慢瞬态响应的冷却主导子系统的慢速NEMPC和用于具有较快响应的功率主导子系统的快速NEMPC。这些智能体在决策过程中相互协作,实现实时动态协同,同时降低计算成本。大量的仿真表明,所开发的调度程序和NEMPC方案比各自的基准调度程序和控制器分别高出25%和40%。与基准方法相比,它们将整体系统性能提高了70%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart energy management: Process structure-based hybrid neural networks for optimal scheduling and economic predictive control in integrated systems
Integrated energy systems (IESs) are complex prosumers consisting of diverse operating units spanning multiple domains. The tight integration of these units results in varied dynamic characteristics and intricate nonlinear process interactions, making detailed dynamic modeling and successful operational optimization challenging. To address these concerns, we propose a process structure-based hybrid time-series neural network (NN) surrogate to predict the dynamic performance of IESs across multiple time scales. This neural network-based modeling approach develops time-series multi-layer perceptrons (MLPs) for the operating units and integrates them with prior process knowledge about system structure and fundamental dynamics. This integration forms three hybrid NNs – long-term, slow, and fast MLPs – that predict the entire system dynamics across multiple time scales. Leveraging these MLPs, we design an NN-based scheduler and an NN-based economic model predictive control (NEMPC) framework to meet global operational requirements: rapid electrical power responsiveness to operators’ requests, adequate cooling supply to customers, and increased system profitability, while addressing the dynamic time-scale multiplicity present in IESs. The proposed day-ahead scheduler is formulated using the ReLU network-based MLP, which effectively represents IES performance under a broad range of conditions from a long-term perspective. The scheduler is then exactly recast into a mixed-integer linear programming problem for efficient evaluation. The real-time NEMPC, based on slow and fast MLPs, comprises two sequential distributed control agents: a slow NEMPC for the cooling-dominant subsystem with slower transient responses and a fast NEMPC for the power-dominant subsystem with faster responses. These agents collaborate in the decision-making process to achieve dynamic synergy in real time while reducing computational costs. Extensive simulations demonstrate that the developed scheduler and NEMPC schemes outperform their respective benchmark scheduler and controller by about 25% and 40%. Together, they enhance overall system performance by over 70% compared to benchmark approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1