Doha Elrhoul , Manuel Naveiro , Manuel Romero Gómez , Thomas A. Adams II
{"title":"有机朗肯循环驱动固体氧化物电解液化天然气运输船绿色制氢的热经济分析","authors":"Doha Elrhoul , Manuel Naveiro , Manuel Romero Gómez , Thomas A. Adams II","doi":"10.1016/j.apenergy.2024.124996","DOIUrl":null,"url":null,"abstract":"<div><div>LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However, the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H<sub>2</sub> production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H<sub>2</sub>) produced is then compressed at 150 bar for subsequent use as required. According to the results, the 2P-ORC generates 14.79 % more power compared to ORC, allowing for an increased energy supply to the SOEC; hence, producing more H<sub>2</sub> (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H<sub>2</sub> production plant results in a cheaper H<sub>2</sub> cost by 0.04 $/kg<sub>H2</sub> compared to ORC, a 1.13 %<sub>LHV</sub> higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used, yet it plays in favour of the plant with ORC making the cost of H<sub>2</sub> cheaper by 0.29 $/kg<sub>H2</sub> in this case. Onboard H<sub>2</sub> production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 124996"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-economic analysis of green hydrogen production onboard LNG carriers through solid oxide electrolysis powered by organic Rankine cycles\",\"authors\":\"Doha Elrhoul , Manuel Naveiro , Manuel Romero Gómez , Thomas A. Adams II\",\"doi\":\"10.1016/j.apenergy.2024.124996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However, the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H<sub>2</sub> production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H<sub>2</sub>) produced is then compressed at 150 bar for subsequent use as required. According to the results, the 2P-ORC generates 14.79 % more power compared to ORC, allowing for an increased energy supply to the SOEC; hence, producing more H<sub>2</sub> (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H<sub>2</sub> production plant results in a cheaper H<sub>2</sub> cost by 0.04 $/kg<sub>H2</sub> compared to ORC, a 1.13 %<sub>LHV</sub> higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used, yet it plays in favour of the plant with ORC making the cost of H<sub>2</sub> cheaper by 0.29 $/kg<sub>H2</sub> in this case. Onboard H<sub>2</sub> production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"380 \",\"pages\":\"Article 124996\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924023808\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023808","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermo-economic analysis of green hydrogen production onboard LNG carriers through solid oxide electrolysis powered by organic Rankine cycles
LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However, the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H2) produced is then compressed at 150 bar for subsequent use as required. According to the results, the 2P-ORC generates 14.79 % more power compared to ORC, allowing for an increased energy supply to the SOEC; hence, producing more H2 (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H2 production plant results in a cheaper H2 cost by 0.04 $/kgH2 compared to ORC, a 1.13 %LHV higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used, yet it plays in favour of the plant with ORC making the cost of H2 cheaper by 0.29 $/kgH2 in this case. Onboard H2 production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.