基于分层框架的电网负荷管理的网络感知电动汽车充放电调度

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2024-11-30 DOI:10.1016/j.compeleceng.2024.109903
Mohammad Sarkhosh, Abbas Fattahi
{"title":"基于分层框架的电网负荷管理的网络感知电动汽车充放电调度","authors":"Mohammad Sarkhosh,&nbsp;Abbas Fattahi","doi":"10.1016/j.compeleceng.2024.109903","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing adoption of electric vehicles (EVs) poses significant challenges for power system operations, requiring scalable coordination to mitigate their negative impacts and leverage their potential to enhance grid conditions. This paper introduces a scalable, three-layer hierarchical framework for optimal EV charge and discharge scheduling (EVCDS) that coordinates key agents: EVs, EV aggregators (EVAs), and the distribution network operator (DNO). The optimization problem is developed as an exchange problem and solved using the alternating direction method of multipliers (ADMM) in a decentralized approach. The proposed EVCDS addresses economic factors by minimizing battery degradation costs at the EV level and charging costs at the EVA level, while managing technical aspects at the DNO level by minimizing load curve variance and limiting power capacity. Moreover,voltages at network nodes are calculated using the DistFlow model to simplify the optimization and ensure compliance with standard operational limits. Compared to uncoordinated EV charging, EVCDS reduces load profile deviations by 85% and total costs by 91%, while also improving bus voltage profiles.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"121 ","pages":"Article 109903"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network-aware electric vehicle charging/discharging scheduling for grid load management in a hierarchical framework\",\"authors\":\"Mohammad Sarkhosh,&nbsp;Abbas Fattahi\",\"doi\":\"10.1016/j.compeleceng.2024.109903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing adoption of electric vehicles (EVs) poses significant challenges for power system operations, requiring scalable coordination to mitigate their negative impacts and leverage their potential to enhance grid conditions. This paper introduces a scalable, three-layer hierarchical framework for optimal EV charge and discharge scheduling (EVCDS) that coordinates key agents: EVs, EV aggregators (EVAs), and the distribution network operator (DNO). The optimization problem is developed as an exchange problem and solved using the alternating direction method of multipliers (ADMM) in a decentralized approach. The proposed EVCDS addresses economic factors by minimizing battery degradation costs at the EV level and charging costs at the EVA level, while managing technical aspects at the DNO level by minimizing load curve variance and limiting power capacity. Moreover,voltages at network nodes are calculated using the DistFlow model to simplify the optimization and ensure compliance with standard operational limits. Compared to uncoordinated EV charging, EVCDS reduces load profile deviations by 85% and total costs by 91%, while also improving bus voltage profiles.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"121 \",\"pages\":\"Article 109903\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624008292\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624008292","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车(ev)的日益普及给电力系统运营带来了重大挑战,需要可扩展的协调来减轻其负面影响,并利用其潜力来改善电网状况。本文介绍了一个可扩展的三层分层框架,用于优化电动汽车充放电调度(EVCDS),该框架协调了关键代理:电动汽车、电动汽车聚合器(EVAs)和配电网运营商(DNO)。将优化问题发展为一个交换问题,并采用分散式乘法器的交替方向法求解。提出的EVCDS通过最小化EV级别的电池退化成本和EVA级别的充电成本来解决经济因素,同时通过最小化负载曲线方差和限制功率容量来管理DNO级别的技术方面。此外,使用DistFlow模型计算网络节点电压,以简化优化并确保符合标准操作限制。与非协调充电相比,EVCDS可将负载分布偏差降低85%,总成本降低91%,同时还可改善母线电压分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network-aware electric vehicle charging/discharging scheduling for grid load management in a hierarchical framework
The increasing adoption of electric vehicles (EVs) poses significant challenges for power system operations, requiring scalable coordination to mitigate their negative impacts and leverage their potential to enhance grid conditions. This paper introduces a scalable, three-layer hierarchical framework for optimal EV charge and discharge scheduling (EVCDS) that coordinates key agents: EVs, EV aggregators (EVAs), and the distribution network operator (DNO). The optimization problem is developed as an exchange problem and solved using the alternating direction method of multipliers (ADMM) in a decentralized approach. The proposed EVCDS addresses economic factors by minimizing battery degradation costs at the EV level and charging costs at the EVA level, while managing technical aspects at the DNO level by minimizing load curve variance and limiting power capacity. Moreover,voltages at network nodes are calculated using the DistFlow model to simplify the optimization and ensure compliance with standard operational limits. Compared to uncoordinated EV charging, EVCDS reduces load profile deviations by 85% and total costs by 91%, while also improving bus voltage profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Editorial Board Improved perturbation based hybrid firefly algorithm and long short-term memory based intelligent security model for IoT network intrusion detection iZKP-AKA: A secure and improved ZKP-AKA protocol for sustainable healthcare BlockGuard: Advancing digital copyright integrity with blockchain technique Reliability-based preventive maintenance scheduling in power generation systems: A lévy flight and chaotic local search-based discrete mayfly algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1