{"title":"压力下OIH杂化物C2H8N4S22+·2HSO4−的生长、分子对接、Hirshfeld表面分析及结构、形态和力学性能第一性原理研究","authors":"Ayoub Eddhimi , Abdellatif Rafik , Burak Tüzün , Gaurav Jhaa , Khalid Yamni , Hafid Zouihri","doi":"10.1016/j.molstruc.2024.140809","DOIUrl":null,"url":null,"abstract":"<div><div>Single crystals of the dithiobis-(formamidinium) bis-(hydrogen sulfate) C<sub>2</sub>H<sub>8</sub>N<sub>4</sub>S<sub>2</sub><sup>2+</sup>·2HSO<sub>4</sub><sup>−</sup>hybrid compound was growth by slow evaporation method at room temperature. The crystal structure was rediscussed with more detailed structural investigations than the previously reported structure (CCDC 1,876,435). The compound was characterized through several techniques, including Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV–Visible absorption analysis, and Hirshfeld surface analysis (SHG). Also, this study provides a comprehensive analysis of the Organic-Inorganic Hybrid (OIH) properties under different pressures using the ultrasoft pseudopotential method as implemented on the density functional theory (DFT), with the Perdew-Burke-Ernzerhof (PBE) GGA approximation for exchange-correlation. The paper explores a wide range of characteristics, such as structure, elasticity, morphology, mechanics, and electronics of the title compound and simulates their evolution under hydrostatic pressures ranging from 5 to 20 GPa. As results, significant variations in structure and electronic parameter's values and mechanical properties have been observed. Furthermore, NCI, ELF, Hirshfeld Surface and Molecular docking analysis of the studied hybrid crystalline material have been discussed. Molecular docking simulations were used to assess the examined molecule's possible antibacterial action against the protein SARS-CoV-2 S Omicron Spike B.1.1.529 (PDB ID: <span><span>7QO9</span><svg><path></path></svg></span> and <span><span>7QTK</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1324 ","pages":"Article 140809"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+·2HSO4− under pressure\",\"authors\":\"Ayoub Eddhimi , Abdellatif Rafik , Burak Tüzün , Gaurav Jhaa , Khalid Yamni , Hafid Zouihri\",\"doi\":\"10.1016/j.molstruc.2024.140809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single crystals of the dithiobis-(formamidinium) bis-(hydrogen sulfate) C<sub>2</sub>H<sub>8</sub>N<sub>4</sub>S<sub>2</sub><sup>2+</sup>·2HSO<sub>4</sub><sup>−</sup>hybrid compound was growth by slow evaporation method at room temperature. The crystal structure was rediscussed with more detailed structural investigations than the previously reported structure (CCDC 1,876,435). The compound was characterized through several techniques, including Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV–Visible absorption analysis, and Hirshfeld surface analysis (SHG). Also, this study provides a comprehensive analysis of the Organic-Inorganic Hybrid (OIH) properties under different pressures using the ultrasoft pseudopotential method as implemented on the density functional theory (DFT), with the Perdew-Burke-Ernzerhof (PBE) GGA approximation for exchange-correlation. The paper explores a wide range of characteristics, such as structure, elasticity, morphology, mechanics, and electronics of the title compound and simulates their evolution under hydrostatic pressures ranging from 5 to 20 GPa. As results, significant variations in structure and electronic parameter's values and mechanical properties have been observed. Furthermore, NCI, ELF, Hirshfeld Surface and Molecular docking analysis of the studied hybrid crystalline material have been discussed. Molecular docking simulations were used to assess the examined molecule's possible antibacterial action against the protein SARS-CoV-2 S Omicron Spike B.1.1.529 (PDB ID: <span><span>7QO9</span><svg><path></path></svg></span> and <span><span>7QTK</span><svg><path></path></svg></span>).</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1324 \",\"pages\":\"Article 140809\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024033179\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024033179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+·2HSO4− under pressure
Single crystals of the dithiobis-(formamidinium) bis-(hydrogen sulfate) C2H8N4S22+·2HSO4−hybrid compound was growth by slow evaporation method at room temperature. The crystal structure was rediscussed with more detailed structural investigations than the previously reported structure (CCDC 1,876,435). The compound was characterized through several techniques, including Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV–Visible absorption analysis, and Hirshfeld surface analysis (SHG). Also, this study provides a comprehensive analysis of the Organic-Inorganic Hybrid (OIH) properties under different pressures using the ultrasoft pseudopotential method as implemented on the density functional theory (DFT), with the Perdew-Burke-Ernzerhof (PBE) GGA approximation for exchange-correlation. The paper explores a wide range of characteristics, such as structure, elasticity, morphology, mechanics, and electronics of the title compound and simulates their evolution under hydrostatic pressures ranging from 5 to 20 GPa. As results, significant variations in structure and electronic parameter's values and mechanical properties have been observed. Furthermore, NCI, ELF, Hirshfeld Surface and Molecular docking analysis of the studied hybrid crystalline material have been discussed. Molecular docking simulations were used to assess the examined molecule's possible antibacterial action against the protein SARS-CoV-2 S Omicron Spike B.1.1.529 (PDB ID: 7QO9 and 7QTK).
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.