空间可展开结构高应变复合材料粘弹性-粘塑性建模

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-11-28 DOI:10.1016/j.ijsolstr.2024.113154
Xiaowei Yue , Ruiwen Guo , Ning An , Jinxiong Zhou
{"title":"空间可展开结构高应变复合材料粘弹性-粘塑性建模","authors":"Xiaowei Yue ,&nbsp;Ruiwen Guo ,&nbsp;Ning An ,&nbsp;Jinxiong Zhou","doi":"10.1016/j.ijsolstr.2024.113154","DOIUrl":null,"url":null,"abstract":"<div><div>Space deployable structures made of thin-ply fiber-reinforced composite laminates exhibit significant time-dependent mechanical behaviors, including stress relaxation, shape recovery, and permanent residual deformation throughout their service period. Currently, there is a lack of an appropriate composite laminate model that is able to fully describe these phenomena. Here, we address this gap by proposing an anisotropic viscoelastic–viscoplastic continuum constitutive model to capture the mechanical behavior of composite deployable structures during folding, stowage, deployment, and recovery periods. The model adopts a viscoelastic formulation based on the Boltzmann integral, coupled with a Hill-type rate-dependent viscoplastic formulation. A detailed numerical implementation scheme using fully implicit integration with a two-step viscoelastic predictor and viscoplastic corrector strategy is provided. The accuracy and efficiency of the proposed model are validated against experimental results for both unidirectional and woven laminates. Simulations accurately capture the rate-dependent nonlinear stress–strain response, creep response under constant stress, and hysteresis loops in cyclic loading-unloading tests for single-ply lamina under various off-axis loading directions. Importantly, the proposed method is the first to capture the experimentally observed permanent deformation of real-world composite deployable structures, validated through column bending tests. This advanced modeling and simulation capability significantly enhances the simulation and design of space deployable structures.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"308 ","pages":"Article 113154"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling viscoelasticity–viscoplasticity of high-strain composites for space deployable structures\",\"authors\":\"Xiaowei Yue ,&nbsp;Ruiwen Guo ,&nbsp;Ning An ,&nbsp;Jinxiong Zhou\",\"doi\":\"10.1016/j.ijsolstr.2024.113154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Space deployable structures made of thin-ply fiber-reinforced composite laminates exhibit significant time-dependent mechanical behaviors, including stress relaxation, shape recovery, and permanent residual deformation throughout their service period. Currently, there is a lack of an appropriate composite laminate model that is able to fully describe these phenomena. Here, we address this gap by proposing an anisotropic viscoelastic–viscoplastic continuum constitutive model to capture the mechanical behavior of composite deployable structures during folding, stowage, deployment, and recovery periods. The model adopts a viscoelastic formulation based on the Boltzmann integral, coupled with a Hill-type rate-dependent viscoplastic formulation. A detailed numerical implementation scheme using fully implicit integration with a two-step viscoelastic predictor and viscoplastic corrector strategy is provided. The accuracy and efficiency of the proposed model are validated against experimental results for both unidirectional and woven laminates. Simulations accurately capture the rate-dependent nonlinear stress–strain response, creep response under constant stress, and hysteresis loops in cyclic loading-unloading tests for single-ply lamina under various off-axis loading directions. Importantly, the proposed method is the first to capture the experimentally observed permanent deformation of real-world composite deployable structures, validated through column bending tests. This advanced modeling and simulation capability significantly enhances the simulation and design of space deployable structures.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"308 \",\"pages\":\"Article 113154\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324005134\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由薄层纤维增强复合材料层压板制成的空间可展开结构在整个使用期间表现出显著的随时间变化的力学行为,包括应力松弛、形状恢复和永久残余变形。目前,缺乏一种合适的复合材料层压模型,能够充分描述这些现象。在这里,我们通过提出一个各向异性粘弹粘塑性连续本构模型来解决这一差距,以捕捉复合材料可展开结构在折叠、积载、展开和恢复期间的力学行为。该模型采用基于玻尔兹曼积分的粘弹性公式和希尔型速率相关粘塑性公式。给出了一种采用两步粘弹性预测和粘塑性校正策略的全隐式积分的详细数值实现方案。通过对单向板和编织板的实验结果验证了该模型的准确性和有效性。模拟准确捕捉了不同离轴加载方向下单层板循环加卸载试验中速率相关的非线性应力-应变响应、恒应力下的蠕变响应和滞回线。重要的是,所提出的方法是第一个捕获实验观察到的真实复合材料可展开结构的永久变形,并通过柱弯曲试验进行验证。这种先进的建模和仿真能力大大提高了空间可展开结构的仿真和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling viscoelasticity–viscoplasticity of high-strain composites for space deployable structures
Space deployable structures made of thin-ply fiber-reinforced composite laminates exhibit significant time-dependent mechanical behaviors, including stress relaxation, shape recovery, and permanent residual deformation throughout their service period. Currently, there is a lack of an appropriate composite laminate model that is able to fully describe these phenomena. Here, we address this gap by proposing an anisotropic viscoelastic–viscoplastic continuum constitutive model to capture the mechanical behavior of composite deployable structures during folding, stowage, deployment, and recovery periods. The model adopts a viscoelastic formulation based on the Boltzmann integral, coupled with a Hill-type rate-dependent viscoplastic formulation. A detailed numerical implementation scheme using fully implicit integration with a two-step viscoelastic predictor and viscoplastic corrector strategy is provided. The accuracy and efficiency of the proposed model are validated against experimental results for both unidirectional and woven laminates. Simulations accurately capture the rate-dependent nonlinear stress–strain response, creep response under constant stress, and hysteresis loops in cyclic loading-unloading tests for single-ply lamina under various off-axis loading directions. Importantly, the proposed method is the first to capture the experimentally observed permanent deformation of real-world composite deployable structures, validated through column bending tests. This advanced modeling and simulation capability significantly enhances the simulation and design of space deployable structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Editorial Board Modeling viscoelasticity–viscoplasticity of high-strain composites for space deployable structures Analytical and experimental studies on the sequential flaring-buckling behavior of combined bi-tubes in blind bolts Mechanics analysis and experimental study of ultra-thin chip peeling from pre-stretching substrates Characterizing and modeling the wide strain rate range behavior of air-filled open-cell polymeric foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1