Bengi Yıldız , Sümeyye Sınır , Berra Gültekin Sınır
{"title":"含分数阶导数的非线性单自由度系统的一般解法","authors":"Bengi Yıldız , Sümeyye Sınır , Berra Gültekin Sınır","doi":"10.1016/j.ijnonlinmec.2024.104966","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"169 ","pages":"Article 104966"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives\",\"authors\":\"Bengi Yıldız , Sümeyye Sınır , Berra Gültekin Sınır\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"169 \",\"pages\":\"Article 104966\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224003317\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224003317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives
This paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.