铁-硅的高压熔化曲线:对水星核心热性质的启示

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Planets Pub Date : 2024-11-28 DOI:10.1029/2024JE008353
Innocent C. Ezenwa, Yingwei Fei, Rostislav Hrubiak, Curtis Kenney-Benson
{"title":"铁-硅的高压熔化曲线:对水星核心热性质的启示","authors":"Innocent C. Ezenwa,&nbsp;Yingwei Fei,&nbsp;Rostislav Hrubiak,&nbsp;Curtis Kenney-Benson","doi":"10.1029/2024JE008353","DOIUrl":null,"url":null,"abstract":"<p>The motion of liquid iron (Fe) alloy materials in the outer core drives the dynamo, which generates Mercury's magnetic field. The assessment of core models requires laboratory measurements of the melting temperature of Fe alloys at high pressure. Here, we experimentally determined the melting curve of Fe9wt%Si and Fe17wt%Si up to 17 GPa using in situ and ex situ measurements of intermetallic fast diffusion that serves as the melting criterion in a large-volume press. Our determined melting slopes are comparable with previous studies up to about 17 GPa. However, when extrapolated, our melting slopes significantly deviate from previous studies at higher pressures. For Mercury's core with a model composition of Fe9wt%Si, the melting temperature-depth profile determined in our study is lower by ∼150–250 K when compared with theoretical calculations. Using the new melting curve of Fe9wt%Si and the electrical resistivity values from a previous study of Fe8.5wt%Si, we estimate that the electronic thermal conductivity of liquid Fe9wt%Si is 30 Wm<sup>−1</sup>K<sup>−1</sup> at the Mercury's <i>CMB</i> pressure of 5 GPa and 37 Wm<sup>−1</sup>K<sup>−1</sup> at an assumed <i>ICB</i> of 21 GPa, corresponding to heat flux values of 23 mWm<sup>−2</sup> and 32 mWm<sup>−2</sup>, respectively. These values provide new constraints on the core models.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008353","citationCount":"0","resultStr":"{\"title\":\"High Pressure Melting Curve of Fe-Si: Implication for the Thermal Properties in Mercury's Core\",\"authors\":\"Innocent C. Ezenwa,&nbsp;Yingwei Fei,&nbsp;Rostislav Hrubiak,&nbsp;Curtis Kenney-Benson\",\"doi\":\"10.1029/2024JE008353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The motion of liquid iron (Fe) alloy materials in the outer core drives the dynamo, which generates Mercury's magnetic field. The assessment of core models requires laboratory measurements of the melting temperature of Fe alloys at high pressure. Here, we experimentally determined the melting curve of Fe9wt%Si and Fe17wt%Si up to 17 GPa using in situ and ex situ measurements of intermetallic fast diffusion that serves as the melting criterion in a large-volume press. Our determined melting slopes are comparable with previous studies up to about 17 GPa. However, when extrapolated, our melting slopes significantly deviate from previous studies at higher pressures. For Mercury's core with a model composition of Fe9wt%Si, the melting temperature-depth profile determined in our study is lower by ∼150–250 K when compared with theoretical calculations. Using the new melting curve of Fe9wt%Si and the electrical resistivity values from a previous study of Fe8.5wt%Si, we estimate that the electronic thermal conductivity of liquid Fe9wt%Si is 30 Wm<sup>−1</sup>K<sup>−1</sup> at the Mercury's <i>CMB</i> pressure of 5 GPa and 37 Wm<sup>−1</sup>K<sup>−1</sup> at an assumed <i>ICB</i> of 21 GPa, corresponding to heat flux values of 23 mWm<sup>−2</sup> and 32 mWm<sup>−2</sup>, respectively. These values provide new constraints on the core models.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008353\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008353","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

外核液态铁(Fe)合金材料的运动驱动发电机,从而产生水星的磁场。核心模型的评估需要实验室测量铁合金在高压下的熔化温度。在这里,我们通过实验确定了Fe9wt%Si和Fe17wt%Si高达17gpa的熔化曲线,使用原位和非原位测量金属间快速扩散,作为大容量压力机中的熔化标准。我们确定的融化斜率与以前的研究相当,最高可达17 GPa。然而,当外推时,我们的融化斜率明显偏离先前在更高压力下的研究。对于模型组成为Fe9wt%Si的水星核心,与理论计算相比,我们研究中确定的熔融温度-深度剖面降低了~ 150-250 K。利用新的Fe9wt%Si熔化曲线和前人研究Fe8.5wt%Si的电阻率值,我们估计Fe9wt%Si液态的电子导热系数在水星的CMB压力为5 GPa时为30 Wm−1K−1,在假设ICB为21 GPa时为37 Wm−1K−1,对应的热流密度分别为23 mWm−2和32 mWm−2。这些值为核心模型提供了新的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Pressure Melting Curve of Fe-Si: Implication for the Thermal Properties in Mercury's Core

The motion of liquid iron (Fe) alloy materials in the outer core drives the dynamo, which generates Mercury's magnetic field. The assessment of core models requires laboratory measurements of the melting temperature of Fe alloys at high pressure. Here, we experimentally determined the melting curve of Fe9wt%Si and Fe17wt%Si up to 17 GPa using in situ and ex situ measurements of intermetallic fast diffusion that serves as the melting criterion in a large-volume press. Our determined melting slopes are comparable with previous studies up to about 17 GPa. However, when extrapolated, our melting slopes significantly deviate from previous studies at higher pressures. For Mercury's core with a model composition of Fe9wt%Si, the melting temperature-depth profile determined in our study is lower by ∼150–250 K when compared with theoretical calculations. Using the new melting curve of Fe9wt%Si and the electrical resistivity values from a previous study of Fe8.5wt%Si, we estimate that the electronic thermal conductivity of liquid Fe9wt%Si is 30 Wm−1K−1 at the Mercury's CMB pressure of 5 GPa and 37 Wm−1K−1 at an assumed ICB of 21 GPa, corresponding to heat flux values of 23 mWm−2 and 32 mWm−2, respectively. These values provide new constraints on the core models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
期刊最新文献
Tadpole-Shaped Nanoparticles in Impact Melt and Implication of High Temperature Chemical Garden in Lunar Soil Magmatic Evolution of the Marius Hills, Rümker Hills, and Gardner Volcanic Complexes on the Moon: Constraints From Topography and Gravity Mapping of Western Valles Marineris Light-Toned Layered Deposits and Newly Classified Rim Deposits Extensive Secondary Cratering From the InSight Sol 1034a Impact Event Characterizing the Modulation and Activation-Triggering Mechanisms of Main-Belt Comets via 3D Thermophysical Modeling of an Ellipsoidal Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1