兰州河谷冷空气池的数值模拟及其优化

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2024-11-27 DOI:10.1002/met.70020
Minjin Ma, Guoqiang Kang, Zhenzhu Zhao, Yidan Cao
{"title":"兰州河谷冷空气池的数值模拟及其优化","authors":"Minjin Ma,&nbsp;Guoqiang Kang,&nbsp;Zhenzhu Zhao,&nbsp;Yidan Cao","doi":"10.1002/met.70020","DOIUrl":null,"url":null,"abstract":"<p>Persistent cold air pools (CAPs) trap pollutants in valleys for extended periods, leading to reduced visibility and increased air pollution within these valleys. The structure of the persistent cold air pool that occurred in the Lanzhou Valley in December 2016 was simulated using different Planetary Boundary Layer (PBL) scenarios of the Weather Research and Forecasting (WRF) model, and the simulation of the persistent cold air pool was further optimized in these PBL scenarios. The simulation results indicated that weather-scale dry subsidence and nighttime ground radiation cooling were significant factors contributing to the accumulation of persistent CAPs and pollutants in the Lanzhou Valley. In contrast, convective lifting from the ground led to the dissipation of persistent CAPs and a reduction in pollution within the valley. During persistent CAPs, the PM<sub>2.5</sub> concentration and valley heat deficit (Q) were 66.7% and 62% higher, respectively, than during non-CAP. In the original MYNN scheme, the average PBL height, double turbulent kinetic energy (QKE), and turbulence length scale during persistent CAPs decreased by 30.79%, 50.5%, and 34.4%, respectively, compared to non-CAP. Compared with the original MYNN scheme, the optimized MYNN scheme shows a significant improvement in the turbulence simulation during the sustained CAPs, resulting in a more stable atmosphere. The PBL height during the sustained CAPs is reduced by 28 m, the diurnal turbulence length scale is reduced by 31.62%, the stability parameter is reduced by 39%, the diurnal mean QKE is reduced by 27.45%, and the QKE impact height is reduced by 100–400 m.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70020","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and its optimization of cold air pools in the Lanzhou Valley\",\"authors\":\"Minjin Ma,&nbsp;Guoqiang Kang,&nbsp;Zhenzhu Zhao,&nbsp;Yidan Cao\",\"doi\":\"10.1002/met.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Persistent cold air pools (CAPs) trap pollutants in valleys for extended periods, leading to reduced visibility and increased air pollution within these valleys. The structure of the persistent cold air pool that occurred in the Lanzhou Valley in December 2016 was simulated using different Planetary Boundary Layer (PBL) scenarios of the Weather Research and Forecasting (WRF) model, and the simulation of the persistent cold air pool was further optimized in these PBL scenarios. The simulation results indicated that weather-scale dry subsidence and nighttime ground radiation cooling were significant factors contributing to the accumulation of persistent CAPs and pollutants in the Lanzhou Valley. In contrast, convective lifting from the ground led to the dissipation of persistent CAPs and a reduction in pollution within the valley. During persistent CAPs, the PM<sub>2.5</sub> concentration and valley heat deficit (Q) were 66.7% and 62% higher, respectively, than during non-CAP. In the original MYNN scheme, the average PBL height, double turbulent kinetic energy (QKE), and turbulence length scale during persistent CAPs decreased by 30.79%, 50.5%, and 34.4%, respectively, compared to non-CAP. Compared with the original MYNN scheme, the optimized MYNN scheme shows a significant improvement in the turbulence simulation during the sustained CAPs, resulting in a more stable atmosphere. The PBL height during the sustained CAPs is reduced by 28 m, the diurnal turbulence length scale is reduced by 31.62%, the stability parameter is reduced by 39%, the diurnal mean QKE is reduced by 27.45%, and the QKE impact height is reduced by 100–400 m.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.70020\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70020","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

持续的冷空气池(CAPs)在山谷中长时间捕获污染物,导致这些山谷内能见度降低和空气污染增加。利用WRF模式不同的行星边界层(PBL)情景对2016年12月兰州谷地持续冷空气池的结构进行了模拟,并进一步优化了PBL情景下兰州谷地持续冷空气池的模拟。结果表明,天气尺度的干沉降和夜间地面辐射冷却是造成兰州流域持续cap和污染物积累的重要因素。相反,来自地面的对流抬升导致了持续性cap的消散和山谷内污染的减少。在持续cap期间,PM2.5浓度和谷热亏缺(Q)分别比非cap期间高66.7%和62%。在原始MYNN方案中,持续cap期间的平均PBL高度、双湍流动能(QKE)和湍流长度尺度分别比非cap降低了30.79%、50.5%和34.4%。与原始MYNN方案相比,优化后的MYNN方案在持续CAPs期间的湍流模拟中有明显改善,使大气更加稳定。持续CAPs期间的边界层高度降低了28 m,日湍流长度尺度降低了31.62%,稳定性参数降低了39%,日平均QKE降低了27.45%,QKE冲击高度降低了100-400 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation and its optimization of cold air pools in the Lanzhou Valley

Persistent cold air pools (CAPs) trap pollutants in valleys for extended periods, leading to reduced visibility and increased air pollution within these valleys. The structure of the persistent cold air pool that occurred in the Lanzhou Valley in December 2016 was simulated using different Planetary Boundary Layer (PBL) scenarios of the Weather Research and Forecasting (WRF) model, and the simulation of the persistent cold air pool was further optimized in these PBL scenarios. The simulation results indicated that weather-scale dry subsidence and nighttime ground radiation cooling were significant factors contributing to the accumulation of persistent CAPs and pollutants in the Lanzhou Valley. In contrast, convective lifting from the ground led to the dissipation of persistent CAPs and a reduction in pollution within the valley. During persistent CAPs, the PM2.5 concentration and valley heat deficit (Q) were 66.7% and 62% higher, respectively, than during non-CAP. In the original MYNN scheme, the average PBL height, double turbulent kinetic energy (QKE), and turbulence length scale during persistent CAPs decreased by 30.79%, 50.5%, and 34.4%, respectively, compared to non-CAP. Compared with the original MYNN scheme, the optimized MYNN scheme shows a significant improvement in the turbulence simulation during the sustained CAPs, resulting in a more stable atmosphere. The PBL height during the sustained CAPs is reduced by 28 m, the diurnal turbulence length scale is reduced by 31.62%, the stability parameter is reduced by 39%, the diurnal mean QKE is reduced by 27.45%, and the QKE impact height is reduced by 100–400 m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Estimation of extreme wind speeds with different return periods in the Northwest Pacific Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India Improving blended probability forecasts with neural networks Correction to “Skilful probabilistic medium-range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system” Drought forecasting with regionalization of climate variables and generalized linear model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1