{"title":"at - u2net:利用注意力增强显著目标检测的语义表示","authors":"Chenzhe Jiang, Banglian Xu, Qinghe Zheng, Zhengtao Li, Leihong Zhang, Zimin Shen, Quan Sun, Dawei Zhang","doi":"10.1049/sil2/6606572","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6606572","citationCount":"0","resultStr":"{\"title\":\"Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection\",\"authors\":\"Chenzhe Jiang, Banglian Xu, Qinghe Zheng, Zhengtao Li, Leihong Zhang, Zimin Shen, Quan Sun, Dawei Zhang\",\"doi\":\"10.1049/sil2/6606572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6606572\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6606572\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6606572","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection
Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf