硒纳米颗粒对热应激下虹鳟头肾选择性剪接的影响。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Marine Biotechnology Pub Date : 2024-11-29 DOI:10.1007/s10126-024-10382-0
Jiahui Zhang, Zhe Liu, Jinqiang Quan, Junhao Lu, Guiyan Zhao, Yucai Pan
{"title":"硒纳米颗粒对热应激下虹鳟头肾选择性剪接的影响。","authors":"Jiahui Zhang,&nbsp;Zhe Liu,&nbsp;Jinqiang Quan,&nbsp;Junhao Lu,&nbsp;Guiyan Zhao,&nbsp;Yucai Pan","doi":"10.1007/s10126-024-10382-0","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress\",\"authors\":\"Jiahui Zhang,&nbsp;Zhe Liu,&nbsp;Jinqiang Quan,&nbsp;Junhao Lu,&nbsp;Guiyan Zhao,&nbsp;Yucai Pan\",\"doi\":\"10.1007/s10126-024-10382-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-024-10382-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10382-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

选择性剪接(Alternative splicing, AS)是一种重要的转录后调控,可以扩大基因产物的功能多样性,是真核生物应对非生物胁迫的机制。然而,关于热胁迫下虹鳟鱼AS事件的研究很少。本研究利用RNA-Seq数据阐明了硒纳米颗粒(SeNPs)对热应激下虹鳟鱼头肾AS事件的影响。结果表明,从9804个基因中共鉴定出45398个AS事件,其中跳过外显子(SE)是最常见的AS事件类型。通过对各组差异表达基因(differential expressed genes, DEGs)的分析,我们了解到DEGs在剪接体中富集,相关基因发生显著改变,促进了AS的发生。我们发现,添加SeNPs后,赖氨酸降解、泛素介导的蛋白水解、RNA降解、内质网蛋白加工等途径显著增强。此外,一些免疫相关的信号通路,如mTOR信号通路相互作用,增强虹鳟对热应激的抵抗力。上述结果表明,热应激条件下虹鳟头肾AS发生变化,SeNPs在缓解虹鳟热应激中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress

Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
期刊最新文献
Identification of a Novel QTL on LG16 Associated with Acute Salt Tolerance in Red Tilapia (Oreochromis spp.) Using GWAS. Structural Variation Analysis in the samd3/elf3 Intergenic Region of the Barred knifejaw (Oplegnathus fasciatus) and the Development of Molecular Marker for Efficient Sex Identification. Transcriptome Sequencing Reveals Effects of Artificial Feed Domestication on Intestinal Performance and Gene Expression of Carnivorous Mandarin Fish (Siniperca chuatsi) and Related Mechanisms. Genome-Assisted Gene-Flow Rescued Genetic Diversity Without Hindering Growth Performance in an Inbred Coho Salmon (Oncorhynchus kisutch) Population Selected for High Growth Phenotype. Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1