{"title":"光系统II:活性位点配体组成的光依赖性振荡。","authors":"Jimin Wang","doi":"10.1107/S2059798324011392","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn<sub>4</sub> cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O<sub>2</sub> molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O<sub>2</sub>.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"850-861"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosystem II: light-dependent oscillation of ligand composition at its active site.\",\"authors\":\"Jimin Wang\",\"doi\":\"10.1107/S2059798324011392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn<sub>4</sub> cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O<sub>2</sub> molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O<sub>2</sub>.</p>\",\"PeriodicalId\":7116,\"journal\":{\"name\":\"Acta Crystallographica. Section D, Structural Biology\",\"volume\":\" \",\"pages\":\"850-861\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica. Section D, Structural Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2059798324011392\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324011392","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Photosystem II: light-dependent oscillation of ligand composition at its active site.
Recently, the conclusions drawn from crystallographic data about the number of oxygen ligands associated with the CaMn4 cofactor in the oxygen-evolving center (OEC) of Thermosynechococcus vulcanus photosystem II (PSII) have been called into question. Here, using OEC-omit, metal ion-omit and ligand-omit electron-density maps, it is shown that the number of oxygen ligands ranges from three in the functional OEC of monomer B following dark adaption (0F), i.e. in its ground state (PDB entry 6jlj/0F and PDB entry 6jlm/0F), to five for both monomers of PSII in photo-advanced states following exposure to one and two flashes of light. For a significant fraction of the 0F OECs in monomer A, the number is four (PDB entry 6jlj/0F). Following one flash it increases to five (PDB entry 6jlk/1F), where it remains after a second flash (PDB entry 6jlj/2F). Following a third flash (3F), it decreases to three (PDB entry 6jlp/3F), suggesting that an O2 molecule has been produced. These observations suggest a mechanism for the reaction that transforms the O atoms of the water molecules bound at the O3 and O1 sites of the OEC into O2.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.