铜绿假单胞菌P1株截短的Ia族IV型蛋白的1.3 Å分辨率结构。

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Acta Crystallographica. Section D, Structural Biology Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.1107/S205979832401132X
Nicholas Bragagnolo, Gerald F Audette
{"title":"铜绿假单胞菌P1株截短的Ia族IV型蛋白的1.3 Å分辨率结构。","authors":"Nicholas Bragagnolo, Gerald F Audette","doi":"10.1107/S205979832401132X","DOIUrl":null,"url":null,"abstract":"<p><p>The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"834-849"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626772/pdf/","citationCount":"0","resultStr":"{\"title\":\"The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1.\",\"authors\":\"Nicholas Bragagnolo, Gerald F Audette\",\"doi\":\"10.1107/S205979832401132X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.</p>\",\"PeriodicalId\":7116,\"journal\":{\"name\":\"Acta Crystallographica. Section D, Structural Biology\",\"volume\":\" \",\"pages\":\"834-849\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica. Section D, Structural Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S205979832401132X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S205979832401132X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

IV型菌毛是一种多样的分子机器,能够赋予多种功能,由多种细菌种类产生。菌毛粘附宿主细胞的能力使其成为开发抗铜绿假单胞菌等人类病原体感染疫苗的可行靶点。本文报道了P. aeruginosa菌株P1 (ΔP1) n端截短的IV型pilin的1.3 Å分辨率晶体结构,这是文献中讨论的其系统发育连锁基团(I族)的第一个结构。该结构是根据20年前收集的x射线衍射数据,用AlphaFold生成的分子替代搜索模型求解的;分析了其他搜索模型的有效性。对高分辨率ΔP1结构的检查揭示了一个有助于维持蛋白质折叠的溶剂网络。通过比较P1与多种IV型匹林的序列和结构,我们发现铜绿假单胞菌系统发育群之间的结构相似性高于相同系统发育群之间的结构相似性,这表明在开发抗毒药物和疫苗时可能需要对匹林进行结构分组。这些分析还发现,α-β环是菌毛中结构最多样化的区域,这可能使其在菌毛识别中发挥作用。ΔP1体外聚合研究表明,菌株K122菌毛寡聚的最佳疏水催化剂不利于ΔP1菌毛的形成;使用ΔP1结构的三起点螺旋组装模型表明α-β环和d环阻止体外聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1.

The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
期刊最新文献
Reconsideration of the P-clusters in VFe proteins using the bond-valence method: towards their electron transfer and protonation. Making the most of an abundance of data. AlphaFold-guided molecular replacement for solving challenging crystal structures. Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules. Peter Main (1939-2024).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1