Pengwei Qiao, Yue Shan, Yan Wei, Shuo Wang, Peiran He, Mei Lei, Guanghui Guo, Zhongguo Zhang
{"title":"工业园区空间分布的驱动机制及周边环境的相对危害程度。","authors":"Pengwei Qiao, Yue Shan, Yan Wei, Shuo Wang, Peiran He, Mei Lei, Guanghui Guo, Zhongguo Zhang","doi":"10.1007/s10653-024-02310-x","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing the formation mechanisms of industrial parks and quantitatively evaluating the related hazard levels are important for understanding the development and planning of industrial parks, but there is currently a lack of relevant research. In this study, Beijing was taken as a case study. The analysis results showed that (1) the overall spatial distribution of industrial parks in Beijing followed a clustering pattern, with nested spatial distribution pattern, where larger structures contributed 53.96% of the variance; (2) for the overall spatial distribution of industrial parks, kernel density of enterprises was the main influencing factor, which there were synergistic enhancement effects with almost all other influencing factors, especially urban construction, the number of financial institutions, the population density, this can share transportation and other resources, achieving coordinated development. According to these main factors, the prediction model of the future spatial distribution pattern of industrial parks in Beijing was established; (3) for site selection of each industrial park, twenty-two industrial parks near industrial enterprises in Beijing were more affected by industrial enterprise clustering, and the remaining 65 industrial parks were strongly affected by terrain, (4) The industrial parks in the central and southern parts of Beijing presented a relatively high hazard level to the surrounding sensitive receptors. These results provide theoretical support for the development and layout of industrial parks.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"5"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driving mechanisms of the spatial distribution of industrial parks and the relative hazard level of the surrounding environment.\",\"authors\":\"Pengwei Qiao, Yue Shan, Yan Wei, Shuo Wang, Peiran He, Mei Lei, Guanghui Guo, Zhongguo Zhang\",\"doi\":\"10.1007/s10653-024-02310-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing the formation mechanisms of industrial parks and quantitatively evaluating the related hazard levels are important for understanding the development and planning of industrial parks, but there is currently a lack of relevant research. In this study, Beijing was taken as a case study. The analysis results showed that (1) the overall spatial distribution of industrial parks in Beijing followed a clustering pattern, with nested spatial distribution pattern, where larger structures contributed 53.96% of the variance; (2) for the overall spatial distribution of industrial parks, kernel density of enterprises was the main influencing factor, which there were synergistic enhancement effects with almost all other influencing factors, especially urban construction, the number of financial institutions, the population density, this can share transportation and other resources, achieving coordinated development. According to these main factors, the prediction model of the future spatial distribution pattern of industrial parks in Beijing was established; (3) for site selection of each industrial park, twenty-two industrial parks near industrial enterprises in Beijing were more affected by industrial enterprise clustering, and the remaining 65 industrial parks were strongly affected by terrain, (4) The industrial parks in the central and southern parts of Beijing presented a relatively high hazard level to the surrounding sensitive receptors. These results provide theoretical support for the development and layout of industrial parks.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 1\",\"pages\":\"5\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02310-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02310-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Driving mechanisms of the spatial distribution of industrial parks and the relative hazard level of the surrounding environment.
Analyzing the formation mechanisms of industrial parks and quantitatively evaluating the related hazard levels are important for understanding the development and planning of industrial parks, but there is currently a lack of relevant research. In this study, Beijing was taken as a case study. The analysis results showed that (1) the overall spatial distribution of industrial parks in Beijing followed a clustering pattern, with nested spatial distribution pattern, where larger structures contributed 53.96% of the variance; (2) for the overall spatial distribution of industrial parks, kernel density of enterprises was the main influencing factor, which there were synergistic enhancement effects with almost all other influencing factors, especially urban construction, the number of financial institutions, the population density, this can share transportation and other resources, achieving coordinated development. According to these main factors, the prediction model of the future spatial distribution pattern of industrial parks in Beijing was established; (3) for site selection of each industrial park, twenty-two industrial parks near industrial enterprises in Beijing were more affected by industrial enterprise clustering, and the remaining 65 industrial parks were strongly affected by terrain, (4) The industrial parks in the central and southern parts of Beijing presented a relatively high hazard level to the surrounding sensitive receptors. These results provide theoretical support for the development and layout of industrial parks.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.