{"title":"遗传和治疗异质性塑造了卵巢透明细胞癌的基线和纵向免疫生态系统。","authors":"Siyu Xia, Lihua Chen, Min Yu, Jiana Li, Jiaxin Chen, Fei Xu, Mengdong Ni, Chaohua Liu, Xiaohua Wu, Xiaojun Chen, Jiajia Li","doi":"10.1136/jitc-2024-010069","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian clear cell carcinoma (OCCC) is a rare and chemo-resistant subtype of ovarian cancer. While immunotherapy has demonstrated effectiveness in some OCCC cases, the mechanisms for heterogeneous immunoreactivity and potential combinatory strategies remain unclear.</p><p><strong>Methods: </strong>Tumor samples from 13 patients with OCCC underwent single-cell mRNA-seq and TCR-seq to generate 1 40 683 cells transcriptome, while additionally 31 formalin-fixed paraffin-embedded samples were used for immunohistochemistry. Spatial transcriptomics of two OCCC samples and bulk RNA-seq of 58 patients were incorporated for spatial and interpatient level explorations. Serum tumor markers and radiologic images of three patients with OCCC who received combinatory VEGF and PD-1 inhibition were retrospectively analyzed.</p><p><strong>Results: </strong>OCCC exhibited a dynamic immune architecture shaped by genetic and therapeutic pressure. <i>ARID1A</i> mutation linked to baseline immune activation, correlated with an enrichment of neoantigen-reactive CXCL13<sup>+</sup> CTLA4<sup>+</sup> CD8<sup>+</sup> T cells (p<0.001) and enhanced FASLG-FAS interactions. Recurrent OCCC was fibrotic, angiogenic, and immunosuppressive, exhibiting metabolic reprogramming towards activated activity in fatty acid metabolism. High CD36 (log-rank p=0.012, HR: 4.515) and CD47 expression (log-rank p=0.037, HR: 3.246) indicated worse progression-free survival. Treatment with bevacizumab increased intratumoral T cell infiltration and activated T cell interferon-γ signaling. Retrospective analysis of clinical cases revealed that combination therapy with anti-VEGF (vascular endothelial growth factor) and anti-PD-1 agents exerted clinical benefits in patients with OCCC with persistent, recurrent, and metastatic disease.</p><p><strong>Conclusions: </strong><i>ARID1A</i> mutation correlated with OCCC baseline immune activation. Stromal reconstruction and tumor metabolic reprogramming functioned as key processes of OCCC dynamic progression. VEGF inhibition remodeled OCCC stroma, restored T cell function and potentiated immunotherapy. CD36 and CD47 might be potential therapeutic targets for recurrent OCCC.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"12 11","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603735/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic and therapeutic heterogeneity shape the baseline and longitudinal immune ecosystem of ovarian clear cell carcinoma.\",\"authors\":\"Siyu Xia, Lihua Chen, Min Yu, Jiana Li, Jiaxin Chen, Fei Xu, Mengdong Ni, Chaohua Liu, Xiaohua Wu, Xiaojun Chen, Jiajia Li\",\"doi\":\"10.1136/jitc-2024-010069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian clear cell carcinoma (OCCC) is a rare and chemo-resistant subtype of ovarian cancer. While immunotherapy has demonstrated effectiveness in some OCCC cases, the mechanisms for heterogeneous immunoreactivity and potential combinatory strategies remain unclear.</p><p><strong>Methods: </strong>Tumor samples from 13 patients with OCCC underwent single-cell mRNA-seq and TCR-seq to generate 1 40 683 cells transcriptome, while additionally 31 formalin-fixed paraffin-embedded samples were used for immunohistochemistry. Spatial transcriptomics of two OCCC samples and bulk RNA-seq of 58 patients were incorporated for spatial and interpatient level explorations. Serum tumor markers and radiologic images of three patients with OCCC who received combinatory VEGF and PD-1 inhibition were retrospectively analyzed.</p><p><strong>Results: </strong>OCCC exhibited a dynamic immune architecture shaped by genetic and therapeutic pressure. <i>ARID1A</i> mutation linked to baseline immune activation, correlated with an enrichment of neoantigen-reactive CXCL13<sup>+</sup> CTLA4<sup>+</sup> CD8<sup>+</sup> T cells (p<0.001) and enhanced FASLG-FAS interactions. Recurrent OCCC was fibrotic, angiogenic, and immunosuppressive, exhibiting metabolic reprogramming towards activated activity in fatty acid metabolism. High CD36 (log-rank p=0.012, HR: 4.515) and CD47 expression (log-rank p=0.037, HR: 3.246) indicated worse progression-free survival. Treatment with bevacizumab increased intratumoral T cell infiltration and activated T cell interferon-γ signaling. Retrospective analysis of clinical cases revealed that combination therapy with anti-VEGF (vascular endothelial growth factor) and anti-PD-1 agents exerted clinical benefits in patients with OCCC with persistent, recurrent, and metastatic disease.</p><p><strong>Conclusions: </strong><i>ARID1A</i> mutation correlated with OCCC baseline immune activation. Stromal reconstruction and tumor metabolic reprogramming functioned as key processes of OCCC dynamic progression. VEGF inhibition remodeled OCCC stroma, restored T cell function and potentiated immunotherapy. CD36 and CD47 might be potential therapeutic targets for recurrent OCCC.</p>\",\"PeriodicalId\":14820,\"journal\":{\"name\":\"Journal for Immunotherapy of Cancer\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603735/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Immunotherapy of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2024-010069\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010069","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Genetic and therapeutic heterogeneity shape the baseline and longitudinal immune ecosystem of ovarian clear cell carcinoma.
Background: Ovarian clear cell carcinoma (OCCC) is a rare and chemo-resistant subtype of ovarian cancer. While immunotherapy has demonstrated effectiveness in some OCCC cases, the mechanisms for heterogeneous immunoreactivity and potential combinatory strategies remain unclear.
Methods: Tumor samples from 13 patients with OCCC underwent single-cell mRNA-seq and TCR-seq to generate 1 40 683 cells transcriptome, while additionally 31 formalin-fixed paraffin-embedded samples were used for immunohistochemistry. Spatial transcriptomics of two OCCC samples and bulk RNA-seq of 58 patients were incorporated for spatial and interpatient level explorations. Serum tumor markers and radiologic images of three patients with OCCC who received combinatory VEGF and PD-1 inhibition were retrospectively analyzed.
Results: OCCC exhibited a dynamic immune architecture shaped by genetic and therapeutic pressure. ARID1A mutation linked to baseline immune activation, correlated with an enrichment of neoantigen-reactive CXCL13+ CTLA4+ CD8+ T cells (p<0.001) and enhanced FASLG-FAS interactions. Recurrent OCCC was fibrotic, angiogenic, and immunosuppressive, exhibiting metabolic reprogramming towards activated activity in fatty acid metabolism. High CD36 (log-rank p=0.012, HR: 4.515) and CD47 expression (log-rank p=0.037, HR: 3.246) indicated worse progression-free survival. Treatment with bevacizumab increased intratumoral T cell infiltration and activated T cell interferon-γ signaling. Retrospective analysis of clinical cases revealed that combination therapy with anti-VEGF (vascular endothelial growth factor) and anti-PD-1 agents exerted clinical benefits in patients with OCCC with persistent, recurrent, and metastatic disease.
Conclusions: ARID1A mutation correlated with OCCC baseline immune activation. Stromal reconstruction and tumor metabolic reprogramming functioned as key processes of OCCC dynamic progression. VEGF inhibition remodeled OCCC stroma, restored T cell function and potentiated immunotherapy. CD36 and CD47 might be potential therapeutic targets for recurrent OCCC.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.