一个与活性氧相关的标记可以预测胶质瘤的预后和免疫抑制微环境。

IF 5.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Report Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.1080/13510002.2024.2433396
Xia Shan, Ruoyu Huang, Kuanyu Wang, Pei Yang
{"title":"一个与活性氧相关的标记可以预测胶质瘤的预后和免疫抑制微环境。","authors":"Xia Shan, Ruoyu Huang, Kuanyu Wang, Pei Yang","doi":"10.1080/13510002.2024.2433396","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Intracellular redox homeostasis is crucial for a series of physiological processes. Reactive oxygen species (ROS) play important roles in redox processes. ROS can maintain cell reproduction and survival at moderate levels while promoting the initiation and progression of tumors at high levels.</p><p><strong>Methods: </strong>Based on a comprehensive analysis of ROS-related gene expression profiles, we established a gene signature associated with ROS to explore its influence on prognosis and immune microenvironment in gliomas.</p><p><strong>Results: </strong>The ROS-related gene expression profile dichotomized patients into two groups with different clinicopathological features and prognoses. A 19-gene ROS-related signature was used to robustly predict prognosis in both training and validation datasets. Functional analysis indicated an association between ROS levels and the immune microenvironment. The expression of immune checkpoints and M2-type markers was upregulated in the high-risk group, which suggested the immunosuppressive function of ROS.</p><p><strong>Conclusion: </strong>ROS-related signature is an independent prognostic factor in gliomas and could potentially exert immunosuppressive effects on the tumor microenvironment.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"29 1","pages":"2433396"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610310/pdf/","citationCount":"0","resultStr":"{\"title\":\"A reactive oxygen species-related signature predicts the prognosis and immunosuppressive microenvironment in gliomas.\",\"authors\":\"Xia Shan, Ruoyu Huang, Kuanyu Wang, Pei Yang\",\"doi\":\"10.1080/13510002.2024.2433396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Intracellular redox homeostasis is crucial for a series of physiological processes. Reactive oxygen species (ROS) play important roles in redox processes. ROS can maintain cell reproduction and survival at moderate levels while promoting the initiation and progression of tumors at high levels.</p><p><strong>Methods: </strong>Based on a comprehensive analysis of ROS-related gene expression profiles, we established a gene signature associated with ROS to explore its influence on prognosis and immune microenvironment in gliomas.</p><p><strong>Results: </strong>The ROS-related gene expression profile dichotomized patients into two groups with different clinicopathological features and prognoses. A 19-gene ROS-related signature was used to robustly predict prognosis in both training and validation datasets. Functional analysis indicated an association between ROS levels and the immune microenvironment. The expression of immune checkpoints and M2-type markers was upregulated in the high-risk group, which suggested the immunosuppressive function of ROS.</p><p><strong>Conclusion: </strong>ROS-related signature is an independent prognostic factor in gliomas and could potentially exert immunosuppressive effects on the tumor microenvironment.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"29 1\",\"pages\":\"2433396\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2024.2433396\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2024.2433396","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:细胞内氧化还原稳态对一系列生理过程至关重要。活性氧(ROS)在氧化还原过程中起着重要作用。ROS可以在中等水平上维持细胞的繁殖和存活,而在高水平上促进肿瘤的发生和发展。方法:在综合分析ROS相关基因表达谱的基础上,建立与ROS相关的基因标记,探讨其对胶质瘤预后和免疫微环境的影响。结果:ros相关基因表达谱将患者分为两组,具有不同的临床病理特征和预后。在训练和验证数据集中,19个基因ros相关特征被用于可靠地预测预后。功能分析表明ROS水平与免疫微环境之间存在关联。高危组免疫检查点和m2型标记物表达上调,提示ROS具有免疫抑制功能。结论:ros相关信号是胶质瘤的独立预后因素,可能对肿瘤微环境产生免疫抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reactive oxygen species-related signature predicts the prognosis and immunosuppressive microenvironment in gliomas.

Objective: Intracellular redox homeostasis is crucial for a series of physiological processes. Reactive oxygen species (ROS) play important roles in redox processes. ROS can maintain cell reproduction and survival at moderate levels while promoting the initiation and progression of tumors at high levels.

Methods: Based on a comprehensive analysis of ROS-related gene expression profiles, we established a gene signature associated with ROS to explore its influence on prognosis and immune microenvironment in gliomas.

Results: The ROS-related gene expression profile dichotomized patients into two groups with different clinicopathological features and prognoses. A 19-gene ROS-related signature was used to robustly predict prognosis in both training and validation datasets. Functional analysis indicated an association between ROS levels and the immune microenvironment. The expression of immune checkpoints and M2-type markers was upregulated in the high-risk group, which suggested the immunosuppressive function of ROS.

Conclusion: ROS-related signature is an independent prognostic factor in gliomas and could potentially exert immunosuppressive effects on the tumor microenvironment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
期刊最新文献
Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Synergistic effects of AgNPs and zileuton on PCOS via ferroptosis and inflammation mitigation. METTL14 Mediates Glut3 m6A methylation to improve osteogenesis under oxidative stress condition. MEGF9 prevents lipopolysaccharide-induced cardiac dysfunction through activating AMPK pathway. Artemisinin protected human bronchial epithelial cells from amiodarone-induced oxidative damage via 5'-AMP-activated protein kinase (AMPK) activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1