{"title":"卷帘式和全局快门相机的统一视频重建","authors":"Bin Fan;Zhexiong Wan;Boxin Shi;Chao Xu;Yuchao Dai","doi":"10.1109/TIP.2024.3504275","DOIUrl":null,"url":null,"abstract":"Currently, the general domain of video reconstruction (VR) is fragmented into different shutters spanning global shutter and rolling shutter cameras. Despite rapid progress in the state-of-the-art, existing methods overwhelmingly follow shutter-specific paradigms and cannot conceptually generalize to other shutter types, hindering the uniformity of VR models. In this paper, we propose UniVR, a versatile framework to handle various shutters through unified modeling and shared parameters. Specifically, UniVR encodes diverse shutter types into a unified space via a tractable shutter adapter, which is parameter-free and thus can be seamlessly delivered to current well-established VR architectures for cross-shutter transfer. To demonstrate its effectiveness, we conceptualize UniVR as three shutter-generic VR methods, namely Uni-SoftSplat, Uni-SuperSloMo, and Uni-RIFE. Extensive experimental results demonstrate that the pre-trained model without any fine-tuning can achieve reasonable performance even on novel shutters. After fine-tuning, new state-of-the-art performances are established that go beyond shutter-specific methods and enjoy strong generalization. The code is available at \n<uri>https://github.com/GitCVfb/UniVR</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6821-6835"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified Video Reconstruction for Rolling Shutter and Global Shutter Cameras\",\"authors\":\"Bin Fan;Zhexiong Wan;Boxin Shi;Chao Xu;Yuchao Dai\",\"doi\":\"10.1109/TIP.2024.3504275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the general domain of video reconstruction (VR) is fragmented into different shutters spanning global shutter and rolling shutter cameras. Despite rapid progress in the state-of-the-art, existing methods overwhelmingly follow shutter-specific paradigms and cannot conceptually generalize to other shutter types, hindering the uniformity of VR models. In this paper, we propose UniVR, a versatile framework to handle various shutters through unified modeling and shared parameters. Specifically, UniVR encodes diverse shutter types into a unified space via a tractable shutter adapter, which is parameter-free and thus can be seamlessly delivered to current well-established VR architectures for cross-shutter transfer. To demonstrate its effectiveness, we conceptualize UniVR as three shutter-generic VR methods, namely Uni-SoftSplat, Uni-SuperSloMo, and Uni-RIFE. Extensive experimental results demonstrate that the pre-trained model without any fine-tuning can achieve reasonable performance even on novel shutters. After fine-tuning, new state-of-the-art performances are established that go beyond shutter-specific methods and enjoy strong generalization. The code is available at \\n<uri>https://github.com/GitCVfb/UniVR</uri>\\n.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"6821-6835\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770126/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770126/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified Video Reconstruction for Rolling Shutter and Global Shutter Cameras
Currently, the general domain of video reconstruction (VR) is fragmented into different shutters spanning global shutter and rolling shutter cameras. Despite rapid progress in the state-of-the-art, existing methods overwhelmingly follow shutter-specific paradigms and cannot conceptually generalize to other shutter types, hindering the uniformity of VR models. In this paper, we propose UniVR, a versatile framework to handle various shutters through unified modeling and shared parameters. Specifically, UniVR encodes diverse shutter types into a unified space via a tractable shutter adapter, which is parameter-free and thus can be seamlessly delivered to current well-established VR architectures for cross-shutter transfer. To demonstrate its effectiveness, we conceptualize UniVR as three shutter-generic VR methods, namely Uni-SoftSplat, Uni-SuperSloMo, and Uni-RIFE. Extensive experimental results demonstrate that the pre-trained model without any fine-tuning can achieve reasonable performance even on novel shutters. After fine-tuning, new state-of-the-art performances are established that go beyond shutter-specific methods and enjoy strong generalization. The code is available at
https://github.com/GitCVfb/UniVR
.