等离子体处理过程中聚合物半导体中掺杂和陷阱形成的竞争效应

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-10-10 DOI:10.1109/LED.2024.3477598
Hongquan Yu;Zhenyuan Tang;Min Tu;Yangjiang Wu;Kaihuan Zhang
{"title":"等离子体处理过程中聚合物半导体中掺杂和陷阱形成的竞争效应","authors":"Hongquan Yu;Zhenyuan Tang;Min Tu;Yangjiang Wu;Kaihuan Zhang","doi":"10.1109/LED.2024.3477598","DOIUrl":null,"url":null,"abstract":"Plasma treatment has been extensively employed for doping or etching organic semiconductors. Both doping and etching effects occur simultaneously during the plasma treatment. Polymer semiconductors, which contain both crystalline and amorphous phases, exhibit inherent selective etching characteristics. However, the combined effects of doping and selective etching on the electrical properties of polymer semiconductors have not been thoroughly investigated. In this study, we examine the influence of plasma treatment on the surface morphology and electrical properties of organic field-effect transistors utilizing the polymer semiconductor DPP-DTT. A competitive effect between doping and trap formation is observed during plasma treatment, resulting in controllable bidirectional shifts in threshold voltage with acceptable mobility degradation. Under optimal plasma treatment conditions, a 3.45-fold increase in the current response and improved recovery performance were observed in NO2 gas sensing applications, attributed to the formation of trap and the pore structure from selective etching. These results highlight the significant potential of plasma treatment for optimizing polymer-based organic transistors.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2506-2509"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competing Effects of Doping and Trap Formation in Polymer Semiconductors During Plasma Treatment\",\"authors\":\"Hongquan Yu;Zhenyuan Tang;Min Tu;Yangjiang Wu;Kaihuan Zhang\",\"doi\":\"10.1109/LED.2024.3477598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma treatment has been extensively employed for doping or etching organic semiconductors. Both doping and etching effects occur simultaneously during the plasma treatment. Polymer semiconductors, which contain both crystalline and amorphous phases, exhibit inherent selective etching characteristics. However, the combined effects of doping and selective etching on the electrical properties of polymer semiconductors have not been thoroughly investigated. In this study, we examine the influence of plasma treatment on the surface morphology and electrical properties of organic field-effect transistors utilizing the polymer semiconductor DPP-DTT. A competitive effect between doping and trap formation is observed during plasma treatment, resulting in controllable bidirectional shifts in threshold voltage with acceptable mobility degradation. Under optimal plasma treatment conditions, a 3.45-fold increase in the current response and improved recovery performance were observed in NO2 gas sensing applications, attributed to the formation of trap and the pore structure from selective etching. These results highlight the significant potential of plasma treatment for optimizing polymer-based organic transistors.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2506-2509\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713402/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713402/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

等离子体处理已广泛应用于有机半导体的掺杂或蚀刻。在等离子体处理过程中,掺杂和蚀刻效应同时发生。聚合物半导体,包含晶体和非晶相,表现出固有的选择性蚀刻特性。然而,掺杂和选择性蚀刻对聚合物半导体电性能的综合影响尚未得到深入的研究。在这项研究中,我们研究了等离子体处理对利用聚合物半导体DPP-DTT的有机场效应晶体管表面形貌和电学性能的影响。在等离子体处理过程中,观察到掺杂和陷阱形成之间的竞争效应,导致阈值电压的可控双向位移和可接受的迁移率下降。在最佳等离子体处理条件下,由于陷阱的形成和选择性蚀刻的孔隙结构,NO2气敏应用中的电流响应提高了3.45倍,回收性能也得到了改善。这些结果突出了等离子体处理在优化聚合物基有机晶体管方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Competing Effects of Doping and Trap Formation in Polymer Semiconductors During Plasma Treatment
Plasma treatment has been extensively employed for doping or etching organic semiconductors. Both doping and etching effects occur simultaneously during the plasma treatment. Polymer semiconductors, which contain both crystalline and amorphous phases, exhibit inherent selective etching characteristics. However, the combined effects of doping and selective etching on the electrical properties of polymer semiconductors have not been thoroughly investigated. In this study, we examine the influence of plasma treatment on the surface morphology and electrical properties of organic field-effect transistors utilizing the polymer semiconductor DPP-DTT. A competitive effect between doping and trap formation is observed during plasma treatment, resulting in controllable bidirectional shifts in threshold voltage with acceptable mobility degradation. Under optimal plasma treatment conditions, a 3.45-fold increase in the current response and improved recovery performance were observed in NO2 gas sensing applications, attributed to the formation of trap and the pore structure from selective etching. These results highlight the significant potential of plasma treatment for optimizing polymer-based organic transistors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Electron Devices Table of Contents IEEE Electron Device Letters Information for Authors EDS Meetings Calendar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1