{"title":"生物流体中铜的选择性结合和去除——为什么PSP配体如此有效?","authors":"Peter Faller","doi":"10.1007/s00775-024-02082-w","DOIUrl":null,"url":null,"abstract":"<div><p>The following comment tries to answer why the reported removal of copper from buffer, cell culture medium, and cell extract by a supported chelator called phenPS is so selective and efficient. It is further argued that the family of PSP (phosphine sulfide-stabilized phosphines) chelators, due to their unique properties, have various potential future application in biology and medicine such as chelation therapy, copper-sensors, or tools to understand copper metabolism.</p></div>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":"29 7-8","pages":"639 - 640"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective binding and removal of copper from biological fluids—why are PSP ligands so efficient?\",\"authors\":\"Peter Faller\",\"doi\":\"10.1007/s00775-024-02082-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The following comment tries to answer why the reported removal of copper from buffer, cell culture medium, and cell extract by a supported chelator called phenPS is so selective and efficient. It is further argued that the family of PSP (phosphine sulfide-stabilized phosphines) chelators, due to their unique properties, have various potential future application in biology and medicine such as chelation therapy, copper-sensors, or tools to understand copper metabolism.</p></div>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"Journal of Biological Inorganic Chemistry\",\"volume\":\"29 7-8\",\"pages\":\"639 - 640\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00775-024-02082-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-024-02082-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Selective binding and removal of copper from biological fluids—why are PSP ligands so efficient?
The following comment tries to answer why the reported removal of copper from buffer, cell culture medium, and cell extract by a supported chelator called phenPS is so selective and efficient. It is further argued that the family of PSP (phosphine sulfide-stabilized phosphines) chelators, due to their unique properties, have various potential future application in biology and medicine such as chelation therapy, copper-sensors, or tools to understand copper metabolism.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.