Tayebe Fallahi-Pashaki, Reza Shirzadian-Khoramabad, M Mehdi Sohani
{"title":"青蒿素分子伴侣提高拟南芥对非生物胁迫的耐受性。","authors":"Tayebe Fallahi-Pashaki, Reza Shirzadian-Khoramabad, M Mehdi Sohani","doi":"10.1071/FP24208","DOIUrl":null,"url":null,"abstract":"<p><p>Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artemin molecular chaperone from <i>Artemia urmiana</i> improves tolerance of <i>Arabidopsis thaliana</i> to abiotic stress.\",\"authors\":\"Tayebe Fallahi-Pashaki, Reza Shirzadian-Khoramabad, M Mehdi Sohani\",\"doi\":\"10.1071/FP24208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24208\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24208","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Artemin molecular chaperone from Artemia urmiana improves tolerance of Arabidopsis thaliana to abiotic stress.
Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.