大型语言模型能“理解”它们的知识吗?

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-11-30 DOI:10.1002/aic.18661
Venkat Venkatasubramanian
{"title":"大型语言模型能“理解”它们的知识吗?","authors":"Venkat Venkatasubramanian","doi":"10.1002/aic.18661","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do large language models “understand” their knowledge?\",\"authors\":\"Venkat Venkatasubramanian\",\"doi\":\"10.1002/aic.18661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18661\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18661","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)经常被批评为缺乏真正的“理解”和用其知识“推理”的能力,仅仅被视为自动补全引擎。我认为,这种评估可能缺少一种微妙的洞察力。法学硕士确实发展了一种类似于“几何”的经验性“理解”,这对于许多应用来说都是足够的。然而,这种基于不完整和嘈杂数据的“几何”理解,使得它们不可靠,难以推广,缺乏推理能力和解释能力。为了克服这些限制,法学硕士应该与知识的“代数”表示相结合,其中包括专家系统中使用的符号AI元素。这种整合旨在创建基于第一原则的大型知识模型(lkm),这些模型可以模仿人类专家的能力进行推理和解释。此外,我们需要一个概念上的突破,例如从牛顿力学到统计力学的转变,以创造一门新的法学硕士科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do large language models “understand” their knowledge?
Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Gas hydrates in future food production: A comprehensive review of the potential of an emerging technology An atomically economical and environmentally benign approach for the scalable synthesis of rare-earth metal-organic framework catalysts On-aim generation of monodisperse droplets from piezoelectric pulsation-driven glass nozzles Breaking barriers for academic-industry sabbaticals Investigation of hydrogen spillover in atomically dispersed metal on WO3 for selective hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1