{"title":"双相增长抛物型方程解的高分数可微性","authors":"Lijing Zhao, Shenzhou Zheng","doi":"10.1016/j.nonrwa.2024.104270","DOIUrl":null,"url":null,"abstract":"<div><div>We devote this paper to a higher fractional differentiability of solutions for a class of parabolic double-phase equations <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi></mrow></mfenced><mo>=</mo><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi></mrow></mfenced><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>.</mo></mrow></math></span></span></span>A higher fractional differentiability of spatial gradients is established by way of the finite difference quotient, under assumptions that <span><math><mrow><mn>0</mn><mo>≤</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi><mo>,</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, the exponents <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></math></span> satisfies <span><math><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>α</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></math></span>, and <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> belongs to <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>ϑ</mi></mrow></msubsup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>Φ</mi><mo>,</mo><mi>∞</mi><mo>;</mo><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mspace></mspace><mi>β</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mo>≔</mo><mo>max</mo><mrow><mo>{</mo><mfrac><mrow><mi>q</mi><mrow><mo>(</mo><mn>2</mn><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow></mfrac><mo>,</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>Φ</mi><mo>,</mo><mi>∞</mi><mo>;</mo><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mspace></mspace><mi>β</mi></mrow></msubsup></math></span> is the local Besov-Orlicz space.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104270"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher fractional differentiability for solutions to parabolic equations with double-phase growth\",\"authors\":\"Lijing Zhao, Shenzhou Zheng\",\"doi\":\"10.1016/j.nonrwa.2024.104270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We devote this paper to a higher fractional differentiability of solutions for a class of parabolic double-phase equations <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi></mrow></mfenced><mo>=</mo><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi></mrow></mfenced><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>.</mo></mrow></math></span></span></span>A higher fractional differentiability of spatial gradients is established by way of the finite difference quotient, under assumptions that <span><math><mrow><mn>0</mn><mo>≤</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi><mo>,</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, the exponents <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></math></span> satisfies <span><math><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>α</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></math></span>, and <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> belongs to <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>ϑ</mi></mrow></msubsup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>Φ</mi><mo>,</mo><mi>∞</mi><mo>;</mo><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mspace></mspace><mi>β</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mo>≔</mo><mo>max</mo><mrow><mo>{</mo><mfrac><mrow><mi>q</mi><mrow><mo>(</mo><mn>2</mn><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow></mfrac><mo>,</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>Φ</mi><mo>,</mo><mi>∞</mi><mo>;</mo><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mspace></mspace><mi>β</mi></mrow></msubsup></math></span> is the local Besov-Orlicz space.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"84 \",\"pages\":\"Article 104270\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Higher fractional differentiability for solutions to parabolic equations with double-phase growth
We devote this paper to a higher fractional differentiability of solutions for a class of parabolic double-phase equations A higher fractional differentiability of spatial gradients is established by way of the finite difference quotient, under assumptions that for , the exponents satisfies , and belongs to for and , where is the local Besov-Orlicz space.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.