Landsat-8传感器和Sentinel-2传感器数据融合与多尺度详细信息

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-11-15 DOI:10.1109/LSENS.2024.3499361
Peng Wang;Jun Du;Xiongfei Wen;Caiping Hu;Lin Ge;Mingxuan Huang
{"title":"Landsat-8传感器和Sentinel-2传感器数据融合与多尺度详细信息","authors":"Peng Wang;Jun Du;Xiongfei Wen;Caiping Hu;Lin Ge;Mingxuan Huang","doi":"10.1109/LSENS.2024.3499361","DOIUrl":null,"url":null,"abstract":"<?Firstputimage>\nWith the increasing demand for high temporal and spatial resolution multispectral data sequences, many studies have been carried out on fusion on Landsat-8 and Sentinel-2 sensor data. However, current fusion methods suffer from the loss of detailed spatial and spectral information. To address this problem, a Landsat-8 and Sentinel-2 data fusion with multiscale detailed information (MSDI) method is proposed. MSDI combines well the initial spatial prediction obtained from the Landsat-8 data at the target date and the detailed part extracted from the Sentinel-2 data at the reference date. Thin plate spline interpolation is implemented on the Landsat-8 data for upsampling. Smoothing-sharpening filter (SSIF) is employed to separate the high- and low-frequency components of data from the two sensors. The multiscale SSIF is then utilized to migrate the details from the Sentinel-2 data to the upsampled Landsat-8 data. Experiments at two sites confirm that the proposed MSDI method could efficiently generate Sentinel-2-like data with high spatial and spectral resolution.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landsat-8 Sensor and Sentinel-2 Sensor Data Fusion With Multiscale Detailed Information\",\"authors\":\"Peng Wang;Jun Du;Xiongfei Wen;Caiping Hu;Lin Ge;Mingxuan Huang\",\"doi\":\"10.1109/LSENS.2024.3499361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<?Firstputimage>\\nWith the increasing demand for high temporal and spatial resolution multispectral data sequences, many studies have been carried out on fusion on Landsat-8 and Sentinel-2 sensor data. However, current fusion methods suffer from the loss of detailed spatial and spectral information. To address this problem, a Landsat-8 and Sentinel-2 data fusion with multiscale detailed information (MSDI) method is proposed. MSDI combines well the initial spatial prediction obtained from the Landsat-8 data at the target date and the detailed part extracted from the Sentinel-2 data at the reference date. Thin plate spline interpolation is implemented on the Landsat-8 data for upsampling. Smoothing-sharpening filter (SSIF) is employed to separate the high- and low-frequency components of data from the two sensors. The multiscale SSIF is then utilized to migrate the details from the Sentinel-2 data to the upsampled Landsat-8 data. Experiments at two sites confirm that the proposed MSDI method could efficiently generate Sentinel-2-like data with high spatial and spectral resolution.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 12\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10753512/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753512/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着对高时空分辨率多光谱数据序列的需求日益增长,Landsat-8和Sentinel-2传感器数据融合研究日益深入。然而,目前的融合方法存在着丢失详细空间和光谱信息的问题。针对这一问题,提出了Landsat-8和Sentinel-2数据融合多尺度详细信息(MSDI)方法。MSDI很好地结合了目标日期Landsat-8数据获得的初始空间预测和参考日期Sentinel-2数据提取的详细部分。采用薄板样条插值对Landsat-8数据进行上采样。采用平滑锐化滤波器(SSIF)分离两个传感器数据的高低频分量。然后利用多尺度SSIF将Sentinel-2数据的细节迁移到上采样的Landsat-8数据。两个站点的实验证实,MSDI方法可以有效地生成类似sentinel -2的高空间和光谱分辨率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landsat-8 Sensor and Sentinel-2 Sensor Data Fusion With Multiscale Detailed Information
With the increasing demand for high temporal and spatial resolution multispectral data sequences, many studies have been carried out on fusion on Landsat-8 and Sentinel-2 sensor data. However, current fusion methods suffer from the loss of detailed spatial and spectral information. To address this problem, a Landsat-8 and Sentinel-2 data fusion with multiscale detailed information (MSDI) method is proposed. MSDI combines well the initial spatial prediction obtained from the Landsat-8 data at the target date and the detailed part extracted from the Sentinel-2 data at the reference date. Thin plate spline interpolation is implemented on the Landsat-8 data for upsampling. Smoothing-sharpening filter (SSIF) is employed to separate the high- and low-frequency components of data from the two sensors. The multiscale SSIF is then utilized to migrate the details from the Sentinel-2 data to the upsampled Landsat-8 data. Experiments at two sites confirm that the proposed MSDI method could efficiently generate Sentinel-2-like data with high spatial and spectral resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1