基于动态电容匹配的信号线RC网络电流响应算法

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-10-01 DOI:10.1109/TCSI.2024.3463708
Zhoujie Wu;Cai Luo;Zhong Guan
{"title":"基于动态电容匹配的信号线RC网络电流响应算法","authors":"Zhoujie Wu;Cai Luo;Zhong Guan","doi":"10.1109/TCSI.2024.3463708","DOIUrl":null,"url":null,"abstract":"This paper proposes a dynamic capacitance matching (DCM)-based RC current response algorithm for calculating the current waveform of a signal line without performing transistor level SPICE simulation. Specifically, unlike previous methods such as current source model, driver linear representation, waveform functional fitting or equivalent load capacitance, our algorithm does not rely on fixed reduced model of standard-cell driver or RC load. Instead, it approaches the current waveform dynamically by computing current responses of the target driver for various load scenarios. Besides, we creatively use symbolic expression to combine the y-parameter of RC network with the pre-characterized driver library in order to perform capacitance matching and simulate current waveform by considering the Miller and over/undershoot effects. Our algorithm is experimentally verified on 40nm CMOS technology and has been adopted by latest commercial tool for different nodes (from 180nm to 3nm). Experimental results show that our algorithm has only about 1% error compared with SPICE golden results while the runtime is improved by 50 to 200 times, which demonstrates overwhelming capability in calculating timing, power and electromigration of signal lines.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 12","pages":"5804-5813"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Capacitance Matching (DCM)-Based Current Response Algorithm for Signal Line RC Network\",\"authors\":\"Zhoujie Wu;Cai Luo;Zhong Guan\",\"doi\":\"10.1109/TCSI.2024.3463708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dynamic capacitance matching (DCM)-based RC current response algorithm for calculating the current waveform of a signal line without performing transistor level SPICE simulation. Specifically, unlike previous methods such as current source model, driver linear representation, waveform functional fitting or equivalent load capacitance, our algorithm does not rely on fixed reduced model of standard-cell driver or RC load. Instead, it approaches the current waveform dynamically by computing current responses of the target driver for various load scenarios. Besides, we creatively use symbolic expression to combine the y-parameter of RC network with the pre-characterized driver library in order to perform capacitance matching and simulate current waveform by considering the Miller and over/undershoot effects. Our algorithm is experimentally verified on 40nm CMOS technology and has been adopted by latest commercial tool for different nodes (from 180nm to 3nm). Experimental results show that our algorithm has only about 1% error compared with SPICE golden results while the runtime is improved by 50 to 200 times, which demonstrates overwhelming capability in calculating timing, power and electromigration of signal lines.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"71 12\",\"pages\":\"5804-5813\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10701569/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10701569/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于动态电容匹配(DCM)的RC电流响应算法,可在不进行晶体管级SPICE仿真的情况下计算信号线的电流波形。具体来说,与以往的电流源模型、驱动器线性表示、波形函数拟合或等效负载电容等方法不同,我们的算法不依赖于标准单元驱动器或RC负载的固定简化模型。相反,它通过计算各种负载情况下目标驱动器的电流响应来动态地接近电流波形。此外,我们创造性地使用符号表达式将RC网络的y参数与预表征的驱动器库结合起来,在考虑米勒效应和过/欠冲效应的情况下进行电容匹配和电流波形仿真。我们的算法在40nm CMOS技术上进行了实验验证,并已被最新的商用工具用于不同节点(从180nm到3nm)。实验结果表明,该算法与SPICE golden结果相比误差仅为1%左右,而运行时间提高了50 ~ 200倍,在计算信号线的时序、功率和电迁移方面具有很强的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamic Capacitance Matching (DCM)-Based Current Response Algorithm for Signal Line RC Network
This paper proposes a dynamic capacitance matching (DCM)-based RC current response algorithm for calculating the current waveform of a signal line without performing transistor level SPICE simulation. Specifically, unlike previous methods such as current source model, driver linear representation, waveform functional fitting or equivalent load capacitance, our algorithm does not rely on fixed reduced model of standard-cell driver or RC load. Instead, it approaches the current waveform dynamically by computing current responses of the target driver for various load scenarios. Besides, we creatively use symbolic expression to combine the y-parameter of RC network with the pre-characterized driver library in order to perform capacitance matching and simulate current waveform by considering the Miller and over/undershoot effects. Our algorithm is experimentally verified on 40nm CMOS technology and has been adopted by latest commercial tool for different nodes (from 180nm to 3nm). Experimental results show that our algorithm has only about 1% error compared with SPICE golden results while the runtime is improved by 50 to 200 times, which demonstrates overwhelming capability in calculating timing, power and electromigration of signal lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors IEEE Transactions on Circuits and Systems--I: Regular Papers Publication Information Guest Editorial Special Issue on Emerging Hardware Security and Trust Technologies—AsianHOST 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1