双管换热器紊流条件下氧化锌-水和zno -水纳米流体性能的对比分析

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-11-07 DOI:10.1007/s10973-024-13623-5
Brajesh Kumar Ahirwar, Arvind Kumar
{"title":"双管换热器紊流条件下氧化锌-水和zno -水纳米流体性能的对比分析","authors":"Brajesh Kumar Ahirwar,&nbsp;Arvind Kumar","doi":"10.1007/s10973-024-13623-5","DOIUrl":null,"url":null,"abstract":"<div><p>In order to reduce size and cost, the heat transfer (HT) capacity of conventional heat exchanger (HE) must be increased. Addition of nanoparticles (NPs) into parent fluids is a potentially effective method of improving HT at a manageable pressure drop. The present study was focused on the comparative analysis of thermal performance factor (TPF) between CuO–water nanofluid (NF) and ZnO–water nanofluids on double-pipe heat exchanger (DPHE) at four volume fractions (0.005%, 0.02%, 0.04%, and 0.07%) in the Reynolds number (Re) range of 5500–15000. The experiment was performed for single-phase fully developed flow in turbulent regime. The maximum enhancement in Nusselt number (Nu) for CuO–water NF was observed as 12.58% higher than ZnO–water NF for volume fraction (VF) of 0.07% at Re = 5000. Maximum augmentation in friction actor was recorded for CuO–water NF as 14.55% superior than ZnO–water NF for VF of 0.07% at lowest Re of 5500. At a Re of 5500, the maximum TPF value for CuO–water NF was found to be 2.61% greater than ZnO–water NF for 0.07% of VF. In order to develop better understanding of the behaviour of NFs, ZnO and CuO-NPs were characterized in the laboratories using XRD, HRTEM, EDS, and FTIR analysis. An empirical correlation for both Nu and friction factor (ƒ) has been developed within the range of given parameters using regression analysis.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"14213 - 14240"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of CuO–water and ZnO–water nanofluids in the turbulent regime for enhanced performance in double-pipe heat exchanger\",\"authors\":\"Brajesh Kumar Ahirwar,&nbsp;Arvind Kumar\",\"doi\":\"10.1007/s10973-024-13623-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to reduce size and cost, the heat transfer (HT) capacity of conventional heat exchanger (HE) must be increased. Addition of nanoparticles (NPs) into parent fluids is a potentially effective method of improving HT at a manageable pressure drop. The present study was focused on the comparative analysis of thermal performance factor (TPF) between CuO–water nanofluid (NF) and ZnO–water nanofluids on double-pipe heat exchanger (DPHE) at four volume fractions (0.005%, 0.02%, 0.04%, and 0.07%) in the Reynolds number (Re) range of 5500–15000. The experiment was performed for single-phase fully developed flow in turbulent regime. The maximum enhancement in Nusselt number (Nu) for CuO–water NF was observed as 12.58% higher than ZnO–water NF for volume fraction (VF) of 0.07% at Re = 5000. Maximum augmentation in friction actor was recorded for CuO–water NF as 14.55% superior than ZnO–water NF for VF of 0.07% at lowest Re of 5500. At a Re of 5500, the maximum TPF value for CuO–water NF was found to be 2.61% greater than ZnO–water NF for 0.07% of VF. In order to develop better understanding of the behaviour of NFs, ZnO and CuO-NPs were characterized in the laboratories using XRD, HRTEM, EDS, and FTIR analysis. An empirical correlation for both Nu and friction factor (ƒ) has been developed within the range of given parameters using regression analysis.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 23\",\"pages\":\"14213 - 14240\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13623-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13623-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了减小换热器的体积和成本,必须提高传统换热器的换热能力。在母流体中添加纳米颗粒(NPs)是一种潜在的有效方法,可以在可控的压降下改善高温。本文研究了在雷诺数(Re)为5500 ~ 15000范围内,体积分数为0.005%、0.02%、0.04%和0.07%时,双管换热器(DPHE)上cuo -水纳米流体(NF)和zno -水纳米流体的热工性能因子(TPF)的对比分析。实验是在紊流状态下进行的。在Re = 5000时,体积分数(VF)为0.07%时,CuO-water - NF的Nusselt数(Nu)比ZnO-water - NF的Nusselt数(Nu)提高12.58%。在最低Re为5500时,当VF为0.07%时,CuO-water - NF比ZnO-water - NF的摩擦因数增大14.55%。在Re = 5500时,当VF为0.07%时,CuO-water - NF的最大TPF值比ZnO-water - NF高2.61%。为了更好地了解NFs的行为,在实验室中使用XRD, HRTEM, EDS和FTIR分析对ZnO和CuO-NPs进行了表征。在给定的参数范围内,使用回归分析开发了Nu和摩擦因子(f)的经验相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of CuO–water and ZnO–water nanofluids in the turbulent regime for enhanced performance in double-pipe heat exchanger

In order to reduce size and cost, the heat transfer (HT) capacity of conventional heat exchanger (HE) must be increased. Addition of nanoparticles (NPs) into parent fluids is a potentially effective method of improving HT at a manageable pressure drop. The present study was focused on the comparative analysis of thermal performance factor (TPF) between CuO–water nanofluid (NF) and ZnO–water nanofluids on double-pipe heat exchanger (DPHE) at four volume fractions (0.005%, 0.02%, 0.04%, and 0.07%) in the Reynolds number (Re) range of 5500–15000. The experiment was performed for single-phase fully developed flow in turbulent regime. The maximum enhancement in Nusselt number (Nu) for CuO–water NF was observed as 12.58% higher than ZnO–water NF for volume fraction (VF) of 0.07% at Re = 5000. Maximum augmentation in friction actor was recorded for CuO–water NF as 14.55% superior than ZnO–water NF for VF of 0.07% at lowest Re of 5500. At a Re of 5500, the maximum TPF value for CuO–water NF was found to be 2.61% greater than ZnO–water NF for 0.07% of VF. In order to develop better understanding of the behaviour of NFs, ZnO and CuO-NPs were characterized in the laboratories using XRD, HRTEM, EDS, and FTIR analysis. An empirical correlation for both Nu and friction factor (ƒ) has been developed within the range of given parameters using regression analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Numerical investigation of chemical reactive MHD fluid dynamics over a porous surface with Cattaneo–Christov heat flux Lithium-ion battery equivalent thermal conductivity testing method based on Bayesian optimization algorithm Numerical study and optimization of a ferrofluid-filled cavity with thick vertical walls and an elliptical obstacle at the center Performance evaluation and mathematical modeling of reverse osmosis membrane desalination unit Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1