{"title":"B-Mg-Al三元合金颗粒在交变气氛下点火燃烧的热氧化动力学模拟","authors":"Wenke Zhang, Jianzhong Liu, Peihui Xu, Yanwen Zhang","doi":"10.1007/s10973-024-13636-0","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at the demand for improving the heat release performance of solid propellants for high energy and complex practical application scenarios, the B–Mg–Al ternary alloy is proposed as a metal fuel additive. Based on the unique phase distribution of B–Mg–Al ternary metal alloy and the existing theory of ignition and combustion of metal particles, the kinetic simulation of ignition and combustion of B–Mg–Al ternary metal alloy particles in complex alternating atmosphere is carried out by combining with the virtual alternating atmosphere environment. The model calculates the combustion time <i>t</i><sub>c</sub> of 10 μm B–Mg–Al alloy particles in H<sub>2</sub>O(g), H<sub>2</sub>O(g)/Air alternating mode, and Air to be 3.50 ms, 3.98 ms, and 4.60 ms, respectively, and the comparative errors with the experimental measurement of combustion time are kept around 5%, which verifies the reliability of the model results. The simulation study shows that the order of thermal oxidation reaction and the order of combustion of the monomolecular group elements of B–Mg–Al ternary alloy particles are Mg, Al, and B, which to some extent indicates that the addition of Mg and Al has the potential to improve the ignition and combustion performance of B. In addition, there are obvious differences in the ignition and combustion performance and heat transfer performance of the alloy particles under H<sub>2</sub>O(g) and that of Air with the same concentration, which leads to significant instability in both ignition and combustion processes at variable medium.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13799 - 13811"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal oxidation kinetic simulation of ignition and combustion of B–Mg–Al ternary metal alloy particles in alternating atmosphere\",\"authors\":\"Wenke Zhang, Jianzhong Liu, Peihui Xu, Yanwen Zhang\",\"doi\":\"10.1007/s10973-024-13636-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming at the demand for improving the heat release performance of solid propellants for high energy and complex practical application scenarios, the B–Mg–Al ternary alloy is proposed as a metal fuel additive. Based on the unique phase distribution of B–Mg–Al ternary metal alloy and the existing theory of ignition and combustion of metal particles, the kinetic simulation of ignition and combustion of B–Mg–Al ternary metal alloy particles in complex alternating atmosphere is carried out by combining with the virtual alternating atmosphere environment. The model calculates the combustion time <i>t</i><sub>c</sub> of 10 μm B–Mg–Al alloy particles in H<sub>2</sub>O(g), H<sub>2</sub>O(g)/Air alternating mode, and Air to be 3.50 ms, 3.98 ms, and 4.60 ms, respectively, and the comparative errors with the experimental measurement of combustion time are kept around 5%, which verifies the reliability of the model results. The simulation study shows that the order of thermal oxidation reaction and the order of combustion of the monomolecular group elements of B–Mg–Al ternary alloy particles are Mg, Al, and B, which to some extent indicates that the addition of Mg and Al has the potential to improve the ignition and combustion performance of B. In addition, there are obvious differences in the ignition and combustion performance and heat transfer performance of the alloy particles under H<sub>2</sub>O(g) and that of Air with the same concentration, which leads to significant instability in both ignition and combustion processes at variable medium.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 23\",\"pages\":\"13799 - 13811\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13636-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13636-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Thermal oxidation kinetic simulation of ignition and combustion of B–Mg–Al ternary metal alloy particles in alternating atmosphere
Aiming at the demand for improving the heat release performance of solid propellants for high energy and complex practical application scenarios, the B–Mg–Al ternary alloy is proposed as a metal fuel additive. Based on the unique phase distribution of B–Mg–Al ternary metal alloy and the existing theory of ignition and combustion of metal particles, the kinetic simulation of ignition and combustion of B–Mg–Al ternary metal alloy particles in complex alternating atmosphere is carried out by combining with the virtual alternating atmosphere environment. The model calculates the combustion time tc of 10 μm B–Mg–Al alloy particles in H2O(g), H2O(g)/Air alternating mode, and Air to be 3.50 ms, 3.98 ms, and 4.60 ms, respectively, and the comparative errors with the experimental measurement of combustion time are kept around 5%, which verifies the reliability of the model results. The simulation study shows that the order of thermal oxidation reaction and the order of combustion of the monomolecular group elements of B–Mg–Al ternary alloy particles are Mg, Al, and B, which to some extent indicates that the addition of Mg and Al has the potential to improve the ignition and combustion performance of B. In addition, there are obvious differences in the ignition and combustion performance and heat transfer performance of the alloy particles under H2O(g) and that of Air with the same concentration, which leads to significant instability in both ignition and combustion processes at variable medium.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.