基于入侵杂草优化算法的三元纳米流体电动汽车冷却剂能量与火用分析——数值研究

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-10-25 DOI:10.1007/s10973-024-13698-0
P. Satheysh Paval, Balaji Chandrakanth, Hymavathi Madivada, Phani Kumar Mallisetty, T. Karthikeya Sharma
{"title":"基于入侵杂草优化算法的三元纳米流体电动汽车冷却剂能量与火用分析——数值研究","authors":"P. Satheysh Paval,&nbsp;Balaji Chandrakanth,&nbsp;Hymavathi Madivada,&nbsp;Phani Kumar Mallisetty,&nbsp;T. Karthikeya Sharma","doi":"10.1007/s10973-024-13698-0","DOIUrl":null,"url":null,"abstract":"<div><p>The present work explores a novel water-ethylene glycol-based ternary hybrid nanofluid, comprising aluminium oxide (Al<sub>2</sub>O<sub>3</sub>), zinc oxide (ZnO), and reduced graphene oxide (rGO) for electric vehicle traction system radiator coolant. A multi-objective hybrid optimisation technique is used to determine the optimal composition of nanofluid and operating conditions of the radiator. Design of experiments based on response surface methodology is used to develop regression models for performance parameters such as Peclet number, normalised Nusselt number, Bejan number, and second law efficiency. Further, optimised operating conditions and composition of nanofluid were derived using invasive weed optimisation (IWO) algorithm for the best performance of radiator. A multiphase numerical analysis is performed using Ansys® Fluent’s <i>k</i>-<i>ɛ</i> turbulence model to evaluate the performance parameters. Additionally, an experimental study is conducted to understand the degree of consensus with the developed numerical model. Based on optimisation, a ternary hybrid nanofluid concentration of 1.91% with 3.33: 3.94: 3.65 proportion of Al<sub>2</sub>O<sub>3</sub>: ZnO: rGO is identified to be significant at coolant and air inlet conditions of 98.61 °C &amp; 13.96 LPM and 33.27 °C &amp; 1108.6 CFM, respectively. The optimised performance metrics achieved through IWO indicate a Peclet number of 3511, normalised Nusselt number of 1.85 with Bejan number of 0.82 and a second law efficiency of 0.73.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"14129 - 14146"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and exergy analysis of ternary nanofluid for electric vehicle coolant through invasive weed optimisation algorithm—a numerical study\",\"authors\":\"P. Satheysh Paval,&nbsp;Balaji Chandrakanth,&nbsp;Hymavathi Madivada,&nbsp;Phani Kumar Mallisetty,&nbsp;T. Karthikeya Sharma\",\"doi\":\"10.1007/s10973-024-13698-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present work explores a novel water-ethylene glycol-based ternary hybrid nanofluid, comprising aluminium oxide (Al<sub>2</sub>O<sub>3</sub>), zinc oxide (ZnO), and reduced graphene oxide (rGO) for electric vehicle traction system radiator coolant. A multi-objective hybrid optimisation technique is used to determine the optimal composition of nanofluid and operating conditions of the radiator. Design of experiments based on response surface methodology is used to develop regression models for performance parameters such as Peclet number, normalised Nusselt number, Bejan number, and second law efficiency. Further, optimised operating conditions and composition of nanofluid were derived using invasive weed optimisation (IWO) algorithm for the best performance of radiator. A multiphase numerical analysis is performed using Ansys® Fluent’s <i>k</i>-<i>ɛ</i> turbulence model to evaluate the performance parameters. Additionally, an experimental study is conducted to understand the degree of consensus with the developed numerical model. Based on optimisation, a ternary hybrid nanofluid concentration of 1.91% with 3.33: 3.94: 3.65 proportion of Al<sub>2</sub>O<sub>3</sub>: ZnO: rGO is identified to be significant at coolant and air inlet conditions of 98.61 °C &amp; 13.96 LPM and 33.27 °C &amp; 1108.6 CFM, respectively. The optimised performance metrics achieved through IWO indicate a Peclet number of 3511, normalised Nusselt number of 1.85 with Bejan number of 0.82 and a second law efficiency of 0.73.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 23\",\"pages\":\"14129 - 14146\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13698-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13698-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了一种新型的水-乙二醇基三元杂化纳米流体,包括氧化铝(Al2O3)、氧化锌(ZnO)和还原氧化石墨烯(rGO),用于电动汽车牵引系统散热器冷却剂。采用多目标混合优化技术确定了纳米流体的最佳组成和散热器的工作条件。利用响应面法设计实验,建立了Peclet数、归一化Nusselt数、Bejan数和第二定律效率等性能参数的回归模型。此外,利用入侵杂草优化(IWO)算法推导出优化的操作条件和纳米流体组成,以获得最佳散热器性能。使用Ansys®Fluent的k- ε湍流模型进行多相数值分析,以评估性能参数。此外,还进行了一项实验研究,以了解与所开发的数值模型的一致程度。优化结果表明,在98.61°C的冷却剂和进气条件下,Al2O3: ZnO: rGO的比例为3.33:3.94:3.65时,三元复合纳米流体的浓度为1.91%;13.96 LPM和33.27°C;分别为1108.6 CFM。通过IWO实现的优化性能指标表明Peclet数为3511,标准化Nusselt数为1.85,Bejan数为0.82,第二定律效率为0.73。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy and exergy analysis of ternary nanofluid for electric vehicle coolant through invasive weed optimisation algorithm—a numerical study

The present work explores a novel water-ethylene glycol-based ternary hybrid nanofluid, comprising aluminium oxide (Al2O3), zinc oxide (ZnO), and reduced graphene oxide (rGO) for electric vehicle traction system radiator coolant. A multi-objective hybrid optimisation technique is used to determine the optimal composition of nanofluid and operating conditions of the radiator. Design of experiments based on response surface methodology is used to develop regression models for performance parameters such as Peclet number, normalised Nusselt number, Bejan number, and second law efficiency. Further, optimised operating conditions and composition of nanofluid were derived using invasive weed optimisation (IWO) algorithm for the best performance of radiator. A multiphase numerical analysis is performed using Ansys® Fluent’s k-ɛ turbulence model to evaluate the performance parameters. Additionally, an experimental study is conducted to understand the degree of consensus with the developed numerical model. Based on optimisation, a ternary hybrid nanofluid concentration of 1.91% with 3.33: 3.94: 3.65 proportion of Al2O3: ZnO: rGO is identified to be significant at coolant and air inlet conditions of 98.61 °C & 13.96 LPM and 33.27 °C & 1108.6 CFM, respectively. The optimised performance metrics achieved through IWO indicate a Peclet number of 3511, normalised Nusselt number of 1.85 with Bejan number of 0.82 and a second law efficiency of 0.73.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Numerical investigation of chemical reactive MHD fluid dynamics over a porous surface with Cattaneo–Christov heat flux Lithium-ion battery equivalent thermal conductivity testing method based on Bayesian optimization algorithm Numerical study and optimization of a ferrofluid-filled cavity with thick vertical walls and an elliptical obstacle at the center Performance evaluation and mathematical modeling of reverse osmosis membrane desalination unit Experimental and model study on flame radiation characteristics of ethanol spill fires in tunnel environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1