C. J. Sayers, Y. Zhang, C. E. Sanders, R. T. Chapman, A. S. Wyatt, G. Chatterjee, E. Springate, G. Cerullo, D. Wolverson, E. Da Como, E. Carpene
{"title":"拟二维电荷密度波系统非平衡阶参量的映射","authors":"C. J. Sayers, Y. Zhang, C. E. Sanders, R. T. Chapman, A. S. Wyatt, G. Chatterjee, E. Springate, G. Cerullo, D. Wolverson, E. Da Como, E. Carpene","doi":"10.1038/s42005-024-01879-0","DOIUrl":null,"url":null,"abstract":"The driving force of a charge density wave (CDW) transition in quasi-two dimensional systems is still debated, while being crucial in understanding electronic correlation in such materials. Here we use femtosecond time- and angle-resolved photoemission spectroscopy combined with computational methods to investigate the coherent lattice dynamics of a prototypical CDW system. The photo-induced temporal evolution of the periodic lattice distortion associated with the amplitude mode reveals the dynamics of the free energy functional governing the order parameter. Our approach establishes that optically-induced screening rather than CDW melting at the electronic level leads to a transiently modified potential which explains the anharmonic behaviour of the amplitude mode and discloses the structural origin of the symmetry-breaking phase transition. The charge density wave (CDW) formation mechanisms in 2D and quasi-2D systems are still highly debated. Here, the authors combine time-resolved ARPES and ab initio calculations to map the free energy functional in the prototypical CDW compound 1T-TaSe2 concluding that the CDW state is driven by structural rather than electronic instabilities.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01879-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Mapping the nonequilibrium order parameter of a quasi-two dimensional charge density wave system\",\"authors\":\"C. J. Sayers, Y. Zhang, C. E. Sanders, R. T. Chapman, A. S. Wyatt, G. Chatterjee, E. Springate, G. Cerullo, D. Wolverson, E. Da Como, E. Carpene\",\"doi\":\"10.1038/s42005-024-01879-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The driving force of a charge density wave (CDW) transition in quasi-two dimensional systems is still debated, while being crucial in understanding electronic correlation in such materials. Here we use femtosecond time- and angle-resolved photoemission spectroscopy combined with computational methods to investigate the coherent lattice dynamics of a prototypical CDW system. The photo-induced temporal evolution of the periodic lattice distortion associated with the amplitude mode reveals the dynamics of the free energy functional governing the order parameter. Our approach establishes that optically-induced screening rather than CDW melting at the electronic level leads to a transiently modified potential which explains the anharmonic behaviour of the amplitude mode and discloses the structural origin of the symmetry-breaking phase transition. The charge density wave (CDW) formation mechanisms in 2D and quasi-2D systems are still highly debated. Here, the authors combine time-resolved ARPES and ab initio calculations to map the free energy functional in the prototypical CDW compound 1T-TaSe2 concluding that the CDW state is driven by structural rather than electronic instabilities.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01879-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01879-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01879-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Mapping the nonequilibrium order parameter of a quasi-two dimensional charge density wave system
The driving force of a charge density wave (CDW) transition in quasi-two dimensional systems is still debated, while being crucial in understanding electronic correlation in such materials. Here we use femtosecond time- and angle-resolved photoemission spectroscopy combined with computational methods to investigate the coherent lattice dynamics of a prototypical CDW system. The photo-induced temporal evolution of the periodic lattice distortion associated with the amplitude mode reveals the dynamics of the free energy functional governing the order parameter. Our approach establishes that optically-induced screening rather than CDW melting at the electronic level leads to a transiently modified potential which explains the anharmonic behaviour of the amplitude mode and discloses the structural origin of the symmetry-breaking phase transition. The charge density wave (CDW) formation mechanisms in 2D and quasi-2D systems are still highly debated. Here, the authors combine time-resolved ARPES and ab initio calculations to map the free energy functional in the prototypical CDW compound 1T-TaSe2 concluding that the CDW state is driven by structural rather than electronic instabilities.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.