DNMT畸变引起的GPX4抑制可促进成骨细胞铁下垂和骨质疏松

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Bone Research Pub Date : 2024-12-02 DOI:10.1038/s41413-024-00365-1
Binjia Ruan, Jian Dong, Fanhao Wei, Zhiqiang Huang, Bin Yang, Lijun Zhang, Chuling Li, Hui Dong, Wangsen Cao, Hongwei Wang, Yongxiang Wang
{"title":"DNMT畸变引起的GPX4抑制可促进成骨细胞铁下垂和骨质疏松","authors":"Binjia Ruan, Jian Dong, Fanhao Wei, Zhiqiang Huang, Bin Yang, Lijun Zhang, Chuling Li, Hui Dong, Wangsen Cao, Hongwei Wang, Yongxiang Wang","doi":"10.1038/s41413-024-00365-1","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis (OP) is a common and fracture-prone skeletal disease characterized by deteriorated trabecular microstructure and pathologically involving various forms of regulated bone cell death. However, the exact role, cellular nature and regulatory mechanisms of ferroptosis in OP are not fully understood. Here, we reported that OP femurs from ovariectomized (Ovx) mice exhibited pronounced iron deposition, ferroptosis, and transcriptional suppression of a key anti-ferroptotic factor GPX4 (glutathione peroxidase 4). GPX4 suppression was accompanied by hypermethylation of the Gpx4 promoter and an increase in DNA methyltransferases DNMT1/3a/3b and was transcriptionally promoted by repressive KLF5 and the transcriptional corepressors NCoR and SnoN. Conversely, DNMT inhibition with SGI-1027 reversed promoter hypermethylation, GPX4 suppression and ferroptotic osteoporosis. In cultured primary bone cells, ferric ammonium citrate (FAC) mimicking iron loading similarly induced GPX4 suppression and ferroptosis in osteoblasts but not in osteoclasts, which were rescued by siRNA-mediated individual knockdown of DNMT 1/3a/3b. Intriguingly, SGI-1027 alleviated the ferroptotic changes caused by FAC, but not by a GPX4 inactivator RSL3. More importantly, we generated a strain of osteoblast-specific <i>Gpx4</i> haplo-deficient mice <i>Gpx4</i><sup>Ob+/−</sup> that developed spontaneous and more severe ferroptotic OP alterations after Ovx operation, and showed that GPX4 inactivation by RSL3 or semi-knockout in osteoblasts largely abolished the anti-ferroptotic and osteoprotective effects of SGI-1027. Taken together, our data suggest that GPX4 epigenetic suppression caused by DNMT aberration and the resulting osteoblastic ferroptosis contribute significantly to OP pathogenesis, and that the strategies preserving GPX4 by DNMT intervention are potentially effective to treat OP and related bone disorders.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"27 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNMT aberration-incurred GPX4 suppression prompts osteoblast ferroptosis and osteoporosis\",\"authors\":\"Binjia Ruan, Jian Dong, Fanhao Wei, Zhiqiang Huang, Bin Yang, Lijun Zhang, Chuling Li, Hui Dong, Wangsen Cao, Hongwei Wang, Yongxiang Wang\",\"doi\":\"10.1038/s41413-024-00365-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteoporosis (OP) is a common and fracture-prone skeletal disease characterized by deteriorated trabecular microstructure and pathologically involving various forms of regulated bone cell death. However, the exact role, cellular nature and regulatory mechanisms of ferroptosis in OP are not fully understood. Here, we reported that OP femurs from ovariectomized (Ovx) mice exhibited pronounced iron deposition, ferroptosis, and transcriptional suppression of a key anti-ferroptotic factor GPX4 (glutathione peroxidase 4). GPX4 suppression was accompanied by hypermethylation of the Gpx4 promoter and an increase in DNA methyltransferases DNMT1/3a/3b and was transcriptionally promoted by repressive KLF5 and the transcriptional corepressors NCoR and SnoN. Conversely, DNMT inhibition with SGI-1027 reversed promoter hypermethylation, GPX4 suppression and ferroptotic osteoporosis. In cultured primary bone cells, ferric ammonium citrate (FAC) mimicking iron loading similarly induced GPX4 suppression and ferroptosis in osteoblasts but not in osteoclasts, which were rescued by siRNA-mediated individual knockdown of DNMT 1/3a/3b. Intriguingly, SGI-1027 alleviated the ferroptotic changes caused by FAC, but not by a GPX4 inactivator RSL3. More importantly, we generated a strain of osteoblast-specific <i>Gpx4</i> haplo-deficient mice <i>Gpx4</i><sup>Ob+/−</sup> that developed spontaneous and more severe ferroptotic OP alterations after Ovx operation, and showed that GPX4 inactivation by RSL3 or semi-knockout in osteoblasts largely abolished the anti-ferroptotic and osteoprotective effects of SGI-1027. Taken together, our data suggest that GPX4 epigenetic suppression caused by DNMT aberration and the resulting osteoblastic ferroptosis contribute significantly to OP pathogenesis, and that the strategies preserving GPX4 by DNMT intervention are potentially effective to treat OP and related bone disorders.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00365-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00365-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症(OP)是一种常见的易骨折的骨骼疾病,其特征是小梁微结构恶化,病理上涉及多种形式的骨细胞死亡。然而,铁下垂在OP中的确切作用、细胞性质和调控机制尚不完全清楚。在这里,我们报道了卵巢去切(Ovx)小鼠的OP股骨表现出明显的铁沉积、铁下沉和关键的抗铁下沉因子GPX4(谷胱甘肽过氧化物酶4)的转录抑制。GPX4抑制伴随着GPX4启动子的超甲基化和DNA甲基转移酶DNMT1/3a/3b的增加,并被抑制性KLF5和转录共抑制物nor和SnoN转录促进。相反,DNMT抑制与SGI-1027逆转启动子超甲基化,GPX4抑制和铁致骨质疏松症。在培养的原代骨细胞中,柠檬酸铁铵(FAC)模拟铁负荷同样诱导成骨细胞GPX4抑制和铁凋亡,但在破骨细胞中没有,破骨细胞通过sirna介导的DNMT 1/3a/3b的个体敲低而被拯救。有趣的是,SGI-1027减轻了FAC引起的铁致变性,而GPX4失活剂RSL3却没有。更重要的是,我们培育了一株成骨细胞特异性Gpx4单倍体缺陷小鼠Gpx4Ob+/−,在Ovx手术后发生自发且更严重的铁性OP改变,并表明通过RSL3或半敲除成骨细胞中的Gpx4失活在很大程度上消除了SGI-1027的抗铁性和骨保护作用。综上所述,我们的数据表明,由DNMT畸变引起的GPX4表观遗传抑制以及由此导致的成骨细胞铁凋亡是OP发病的重要因素,通过DNMT干预保留GPX4的策略可能有效治疗OP及相关骨疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNMT aberration-incurred GPX4 suppression prompts osteoblast ferroptosis and osteoporosis

Osteoporosis (OP) is a common and fracture-prone skeletal disease characterized by deteriorated trabecular microstructure and pathologically involving various forms of regulated bone cell death. However, the exact role, cellular nature and regulatory mechanisms of ferroptosis in OP are not fully understood. Here, we reported that OP femurs from ovariectomized (Ovx) mice exhibited pronounced iron deposition, ferroptosis, and transcriptional suppression of a key anti-ferroptotic factor GPX4 (glutathione peroxidase 4). GPX4 suppression was accompanied by hypermethylation of the Gpx4 promoter and an increase in DNA methyltransferases DNMT1/3a/3b and was transcriptionally promoted by repressive KLF5 and the transcriptional corepressors NCoR and SnoN. Conversely, DNMT inhibition with SGI-1027 reversed promoter hypermethylation, GPX4 suppression and ferroptotic osteoporosis. In cultured primary bone cells, ferric ammonium citrate (FAC) mimicking iron loading similarly induced GPX4 suppression and ferroptosis in osteoblasts but not in osteoclasts, which were rescued by siRNA-mediated individual knockdown of DNMT 1/3a/3b. Intriguingly, SGI-1027 alleviated the ferroptotic changes caused by FAC, but not by a GPX4 inactivator RSL3. More importantly, we generated a strain of osteoblast-specific Gpx4 haplo-deficient mice Gpx4Ob+/− that developed spontaneous and more severe ferroptotic OP alterations after Ovx operation, and showed that GPX4 inactivation by RSL3 or semi-knockout in osteoblasts largely abolished the anti-ferroptotic and osteoprotective effects of SGI-1027. Taken together, our data suggest that GPX4 epigenetic suppression caused by DNMT aberration and the resulting osteoblastic ferroptosis contribute significantly to OP pathogenesis, and that the strategies preserving GPX4 by DNMT intervention are potentially effective to treat OP and related bone disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
期刊最新文献
Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction Photothermal sensitive nanocomposite hydrogel for infectious bone defects Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2 Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1