{"title":"有限样本跨机故障诊断的自适应模型不可知元学习网络","authors":"Mingzhe Mu, Hongkai Jiang, Xin Wang, Yutong Dong","doi":"10.1016/j.engappai.2024.109748","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based methods have been extensively studied in rotating machinery defect diagnosis. However, training an accurate and robust diagnostic model is still a challenge under severe domain bias and limited samples. For this reason, a new adaptive model-agnostic meta-learning (AMAML) is proposed for cross-machine fault diagnosis with limited samples. First, a novel adaptive feature encode network is built, incorporating lightweight spatial-bilateral channel attention. This enables the network to extract critical fault information in multiple dimensions adaptively within limited samples, which improves the learning efficiency of generalized diagnostic knowledge. Then, an adaptive loss computation (ALC) method is devised, which inventively realizes the interaction between loss computation and model performance. The underfitting and overfitting dilemmas under few-shot conditions are tackled by ALC. Finally, an adaptive meta-optimization strategy is proposed for dynamically adapting the update strategy of the base learner, so that the model is always optimized in the direction of strong generalizability while obtaining high performance. Six cross-machine diagnosis tasks are conducted to verify the effectiveness of AMAML. The average diagnostic accuracy of the AMAML under the 5-shot setting reached 97.42%. Experiments confirm that AMAML is superior to other prevailing methods and is potentially promising for engineering applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"141 ","pages":"Article 109748"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples\",\"authors\":\"Mingzhe Mu, Hongkai Jiang, Xin Wang, Yutong Dong\",\"doi\":\"10.1016/j.engappai.2024.109748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning-based methods have been extensively studied in rotating machinery defect diagnosis. However, training an accurate and robust diagnostic model is still a challenge under severe domain bias and limited samples. For this reason, a new adaptive model-agnostic meta-learning (AMAML) is proposed for cross-machine fault diagnosis with limited samples. First, a novel adaptive feature encode network is built, incorporating lightweight spatial-bilateral channel attention. This enables the network to extract critical fault information in multiple dimensions adaptively within limited samples, which improves the learning efficiency of generalized diagnostic knowledge. Then, an adaptive loss computation (ALC) method is devised, which inventively realizes the interaction between loss computation and model performance. The underfitting and overfitting dilemmas under few-shot conditions are tackled by ALC. Finally, an adaptive meta-optimization strategy is proposed for dynamically adapting the update strategy of the base learner, so that the model is always optimized in the direction of strong generalizability while obtaining high performance. Six cross-machine diagnosis tasks are conducted to verify the effectiveness of AMAML. The average diagnostic accuracy of the AMAML under the 5-shot setting reached 97.42%. Experiments confirm that AMAML is superior to other prevailing methods and is potentially promising for engineering applications.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"141 \",\"pages\":\"Article 109748\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624019079\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624019079","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples
Deep learning-based methods have been extensively studied in rotating machinery defect diagnosis. However, training an accurate and robust diagnostic model is still a challenge under severe domain bias and limited samples. For this reason, a new adaptive model-agnostic meta-learning (AMAML) is proposed for cross-machine fault diagnosis with limited samples. First, a novel adaptive feature encode network is built, incorporating lightweight spatial-bilateral channel attention. This enables the network to extract critical fault information in multiple dimensions adaptively within limited samples, which improves the learning efficiency of generalized diagnostic knowledge. Then, an adaptive loss computation (ALC) method is devised, which inventively realizes the interaction between loss computation and model performance. The underfitting and overfitting dilemmas under few-shot conditions are tackled by ALC. Finally, an adaptive meta-optimization strategy is proposed for dynamically adapting the update strategy of the base learner, so that the model is always optimized in the direction of strong generalizability while obtaining high performance. Six cross-machine diagnosis tasks are conducted to verify the effectiveness of AMAML. The average diagnostic accuracy of the AMAML under the 5-shot setting reached 97.42%. Experiments confirm that AMAML is superior to other prevailing methods and is potentially promising for engineering applications.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.