质子交换膜燃料电池氢气再循环喷射器中水滴的数值研究

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-28 DOI:10.1016/j.applthermaleng.2024.125084
Jiangkun Zou , Jing Li , Gerald Singer , Li Zhang , Pingwen Ming
{"title":"质子交换膜燃料电池氢气再循环喷射器中水滴的数值研究","authors":"Jiangkun Zou ,&nbsp;Jing Li ,&nbsp;Gerald Singer ,&nbsp;Li Zhang ,&nbsp;Pingwen Ming","doi":"10.1016/j.applthermaleng.2024.125084","DOIUrl":null,"url":null,"abstract":"<div><div>Gas ejectors play a vital role in recirculating anode hydrogen within proton exchange membrane fuel cells. Previous studies primarily use single-phase flow computational fluid dynamics to design ejectors, neglecting water phase changes and compromising accuracy. Here, we develop a two-phase flow model incorporating droplet injection in the secondary flow and a water condensation model to analyze the ejector’s behavior. Validated by previous experiments in six different conditions, our two-dimensional model captures dynamic interactions between the gas and liquid water phases, leading to predict entrainment ratio more accurately, with an average deviation of 3.08% compared to 24.04% for the single-phase model. Additionally, simulations have been done for six different cases comparing different degrees of humidification of the secondary hydrogen flow. Water droplet growth increases gas temperature and pressure in the mixing chamber while reducing velocity, lowering the entrainment ratio by over 30%. Injecting a certain amount of droplets into the secondary flow can effectively improve the efficiency of the mixing chamber. Integrating a heat exchanger in the hydrogen supply line increases overall temperature and decreases water condensation. This study provides an in-depth understanding of water phase behavior, further optimizes the hydrogen ejector, and improves the accuracy of its simulation.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"261 ","pages":"Article 125084"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of water droplets in hydrogen recirculation ejectors for proton exchange membrane fuel cells\",\"authors\":\"Jiangkun Zou ,&nbsp;Jing Li ,&nbsp;Gerald Singer ,&nbsp;Li Zhang ,&nbsp;Pingwen Ming\",\"doi\":\"10.1016/j.applthermaleng.2024.125084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gas ejectors play a vital role in recirculating anode hydrogen within proton exchange membrane fuel cells. Previous studies primarily use single-phase flow computational fluid dynamics to design ejectors, neglecting water phase changes and compromising accuracy. Here, we develop a two-phase flow model incorporating droplet injection in the secondary flow and a water condensation model to analyze the ejector’s behavior. Validated by previous experiments in six different conditions, our two-dimensional model captures dynamic interactions between the gas and liquid water phases, leading to predict entrainment ratio more accurately, with an average deviation of 3.08% compared to 24.04% for the single-phase model. Additionally, simulations have been done for six different cases comparing different degrees of humidification of the secondary hydrogen flow. Water droplet growth increases gas temperature and pressure in the mixing chamber while reducing velocity, lowering the entrainment ratio by over 30%. Injecting a certain amount of droplets into the secondary flow can effectively improve the efficiency of the mixing chamber. Integrating a heat exchanger in the hydrogen supply line increases overall temperature and decreases water condensation. This study provides an in-depth understanding of water phase behavior, further optimizes the hydrogen ejector, and improves the accuracy of its simulation.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"261 \",\"pages\":\"Article 125084\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124027522\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124027522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

气体喷射器在质子交换膜燃料电池阳极氢气循环中起着至关重要的作用。以往的研究主要是利用单相流计算流体力学来设计喷射器,忽略了水的相变化,影响了喷射器的精度。在此,我们建立了包含二次流中液滴注入的两相流模型和水凝结模型来分析喷射器的行为。通过之前在6种不同条件下的实验验证,我们的二维模型捕获了气相和液态水之间的动态相互作用,从而更准确地预测了夹带比,平均偏差为3.08%,而单相模型的平均偏差为24.04%。此外,还对六种不同的情况进行了模拟,比较了二次氢流的不同加湿程度。水滴的增长提高了混合室中的气体温度和压力,同时降低了速度,使夹带比降低了30%以上。在二次流中注入一定量的液滴可以有效地提高混合室的效率。在供氢管路中集成一个热交换器,可以提高整体温度,减少冷凝水。本研究深入了解了水相行为,进一步优化了氢气喷射器,提高了其模拟精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study of water droplets in hydrogen recirculation ejectors for proton exchange membrane fuel cells
Gas ejectors play a vital role in recirculating anode hydrogen within proton exchange membrane fuel cells. Previous studies primarily use single-phase flow computational fluid dynamics to design ejectors, neglecting water phase changes and compromising accuracy. Here, we develop a two-phase flow model incorporating droplet injection in the secondary flow and a water condensation model to analyze the ejector’s behavior. Validated by previous experiments in six different conditions, our two-dimensional model captures dynamic interactions between the gas and liquid water phases, leading to predict entrainment ratio more accurately, with an average deviation of 3.08% compared to 24.04% for the single-phase model. Additionally, simulations have been done for six different cases comparing different degrees of humidification of the secondary hydrogen flow. Water droplet growth increases gas temperature and pressure in the mixing chamber while reducing velocity, lowering the entrainment ratio by over 30%. Injecting a certain amount of droplets into the secondary flow can effectively improve the efficiency of the mixing chamber. Integrating a heat exchanger in the hydrogen supply line increases overall temperature and decreases water condensation. This study provides an in-depth understanding of water phase behavior, further optimizes the hydrogen ejector, and improves the accuracy of its simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Editorial Board Modeling and dynamic analysis of IGCC system for varied gasification inputs Investigating air source heat pump cooling performance and humidity management using a physics-based model Evaluation of weighted-sum-of-gray-gases models and radiation characteristics analysis for gas-ash particle mixture in ash deposition Temperature equalization strategy in immersion flow boiling battery thermal management: Optimization of flow regime in boiling heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1