未来港口的能源系统整合和部门耦合:挪威港口的定性研究

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-12-02 DOI:10.1016/j.apenergy.2024.125003
Cecilia Gabrielii , Marte Gammelsæter , Eirill Bachmann Mehammer , Sigrid Damman , Hanne Kauko , Line Rydså
{"title":"未来港口的能源系统整合和部门耦合:挪威港口的定性研究","authors":"Cecilia Gabrielii ,&nbsp;Marte Gammelsæter ,&nbsp;Eirill Bachmann Mehammer ,&nbsp;Sigrid Damman ,&nbsp;Hanne Kauko ,&nbsp;Line Rydså","doi":"10.1016/j.apenergy.2024.125003","DOIUrl":null,"url":null,"abstract":"<div><div>Ports will play an important role in the decarbonisation of maritime transport towards 2050, and for the energy transition in a larger perspective. In this context, options for integrating multiple energy carriers and end-user sectors are seldom addressed. This study aims at qualitatively assessing the energy transition in Norwegian ports, centred around energy supply to the maritime sector, but with a particular focus on sector coupling and energy system integration. To elaborate on plausible energy systems in ports towards 2050, four exploratory scenarios were designed, driven by a low or high techno-economic and socio-technical development. Four case ports were selected for the scenario assessment, differing in ship traffic, ownership, location, port activities, nearby industries, current energy carriers, and ambition level for energy transition.</div><div>The assessment of the four case ports reveals many options for energy and sectoral interactions. Following the electrification of maritime and road transport, as well as the port itself and nearby industries, it was shown that sector coupling facilitates renewable power production in all case port. A more complex multi-energy carrier integration, e.g., between electricity, heat and hydrogen, is of special relevance for ports located near offshore wind establishments and heat demanding sectors like aquaculture industry or buildings with central heating. Here, sector coupling could trigger hydrogen production in the port area, and thereby enable hydrogen supply to ships. Concludingly, energy and sectoral interactions contribute towards a decarbonised, flexible and efficient port energy system, however, the benefit depends on port characteristics and energy transition scenarios.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 125003"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports\",\"authors\":\"Cecilia Gabrielii ,&nbsp;Marte Gammelsæter ,&nbsp;Eirill Bachmann Mehammer ,&nbsp;Sigrid Damman ,&nbsp;Hanne Kauko ,&nbsp;Line Rydså\",\"doi\":\"10.1016/j.apenergy.2024.125003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ports will play an important role in the decarbonisation of maritime transport towards 2050, and for the energy transition in a larger perspective. In this context, options for integrating multiple energy carriers and end-user sectors are seldom addressed. This study aims at qualitatively assessing the energy transition in Norwegian ports, centred around energy supply to the maritime sector, but with a particular focus on sector coupling and energy system integration. To elaborate on plausible energy systems in ports towards 2050, four exploratory scenarios were designed, driven by a low or high techno-economic and socio-technical development. Four case ports were selected for the scenario assessment, differing in ship traffic, ownership, location, port activities, nearby industries, current energy carriers, and ambition level for energy transition.</div><div>The assessment of the four case ports reveals many options for energy and sectoral interactions. Following the electrification of maritime and road transport, as well as the port itself and nearby industries, it was shown that sector coupling facilitates renewable power production in all case port. A more complex multi-energy carrier integration, e.g., between electricity, heat and hydrogen, is of special relevance for ports located near offshore wind establishments and heat demanding sectors like aquaculture industry or buildings with central heating. Here, sector coupling could trigger hydrogen production in the port area, and thereby enable hydrogen supply to ships. Concludingly, energy and sectoral interactions contribute towards a decarbonised, flexible and efficient port energy system, however, the benefit depends on port characteristics and energy transition scenarios.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"380 \",\"pages\":\"Article 125003\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924023870\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023870","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

到2050年,港口将在海上运输的脱碳过程中发挥重要作用,从更大的角度来看,港口将在能源转型中发挥重要作用。在这种情况下,整合多种能源载体和最终用户部门的选择很少得到解决。本研究旨在定性地评估挪威港口的能源转型,以海事部门的能源供应为中心,但特别关注部门耦合和能源系统集成。为了详细阐述到2050年可行的港口能源系统,在低技术或高技术经济和社会技术发展的驱动下,设计了四种探索性情景。选择了四个案例港口进行情景评估,这些港口在船舶流量、所有权、位置、港口活动、附近工业、当前的能源载体和能源转型的雄心水平方面有所不同。对四个案例港口的评估揭示了能源和部门互动的许多选择。随着海上和公路运输以及港口本身和附近工业的电气化,该研究表明,部门耦合促进了所有港口的可再生能源生产。更复杂的多能载体集成,例如电力、热能和氢气之间的集成,对于位于海上风力设施附近的港口和需要热量的部门(如水产养殖业或有集中供暖的建筑物)特别相关。在这里,部门耦合可以触发港区的氢气生产,从而使氢气供应给船舶。最后,能源和部门的相互作用有助于建立一个脱碳、灵活和高效的港口能源系统,然而,效益取决于港口的特点和能源转型情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
Ports will play an important role in the decarbonisation of maritime transport towards 2050, and for the energy transition in a larger perspective. In this context, options for integrating multiple energy carriers and end-user sectors are seldom addressed. This study aims at qualitatively assessing the energy transition in Norwegian ports, centred around energy supply to the maritime sector, but with a particular focus on sector coupling and energy system integration. To elaborate on plausible energy systems in ports towards 2050, four exploratory scenarios were designed, driven by a low or high techno-economic and socio-technical development. Four case ports were selected for the scenario assessment, differing in ship traffic, ownership, location, port activities, nearby industries, current energy carriers, and ambition level for energy transition.
The assessment of the four case ports reveals many options for energy and sectoral interactions. Following the electrification of maritime and road transport, as well as the port itself and nearby industries, it was shown that sector coupling facilitates renewable power production in all case port. A more complex multi-energy carrier integration, e.g., between electricity, heat and hydrogen, is of special relevance for ports located near offshore wind establishments and heat demanding sectors like aquaculture industry or buildings with central heating. Here, sector coupling could trigger hydrogen production in the port area, and thereby enable hydrogen supply to ships. Concludingly, energy and sectoral interactions contribute towards a decarbonised, flexible and efficient port energy system, however, the benefit depends on port characteristics and energy transition scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1