3D打印生物聚合物作为骨盆底支架

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2024-12-03 DOI:10.1039/D4PY01103A
Lindsay B. Chambers, Yuxiang Zhu, Churan Yu, Natalie Crutchfield, Jixin Hou, Liang Liang, Xianqiao Wang, Yang Liu, M. Taylor Sobczak, Taylor Theobald, Xiao Sun, Carly R. Stoll, Tiffany V. Pulido, Johnny Yi, Jeffrey L. Cornella, Heather McIlwee, Hitesh Handa, Elizabeth J. Brisbois, Jessica N. Lancaster and Kenan Song
{"title":"3D打印生物聚合物作为骨盆底支架","authors":"Lindsay B. Chambers, Yuxiang Zhu, Churan Yu, Natalie Crutchfield, Jixin Hou, Liang Liang, Xianqiao Wang, Yang Liu, M. Taylor Sobczak, Taylor Theobald, Xiao Sun, Carly R. Stoll, Tiffany V. Pulido, Johnny Yi, Jeffrey L. Cornella, Heather McIlwee, Hitesh Handa, Elizabeth J. Brisbois, Jessica N. Lancaster and Kenan Song","doi":"10.1039/D4PY01103A","DOIUrl":null,"url":null,"abstract":"<p >Pelvic floor disorders (PFD) are common among women, causing dysfunction, incontinence, and discomfort. Surgeries to repair the descended tissues can result in complications due to implant material design, particularly from the hardness and mechanical mismatch to native tissue. A more flexible implant could reduce complications, such as exposure and tissue erosion. This work seeks to characterize a 3D-printed double-crosslinked hydrogel tissue scaffold consisting primarily of polyvinyl alcohol (PVA). It also compares its static/dynamic/thermal/biological properties to existing commercial products used in PFD therapies, showing our pelvic mesh's biodegradability/robustness advantages over the commercial ones. Tensile tests revealed that the hydrogel scaffold was more compliant than the commercial alternatives. Dynamic mechanical testing has shown that these polymers are durable enough to support organs with specific weight above the pelvic floor. <em>In vivo</em> mouse studies demonstrated low inflammation and good biocompatibility over a 28-day period. The development of this scaffold offers a promising alternative for more effective, long-lasting PFD treatments with fewer post-operative complications, advancing personalized medicine.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 3","pages":" 345-355"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d4py01103a?page=search","citationCount":"0","resultStr":"{\"title\":\"3D printable biopolymers as pelvic floor scaffolds†\",\"authors\":\"Lindsay B. Chambers, Yuxiang Zhu, Churan Yu, Natalie Crutchfield, Jixin Hou, Liang Liang, Xianqiao Wang, Yang Liu, M. Taylor Sobczak, Taylor Theobald, Xiao Sun, Carly R. Stoll, Tiffany V. Pulido, Johnny Yi, Jeffrey L. Cornella, Heather McIlwee, Hitesh Handa, Elizabeth J. Brisbois, Jessica N. Lancaster and Kenan Song\",\"doi\":\"10.1039/D4PY01103A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pelvic floor disorders (PFD) are common among women, causing dysfunction, incontinence, and discomfort. Surgeries to repair the descended tissues can result in complications due to implant material design, particularly from the hardness and mechanical mismatch to native tissue. A more flexible implant could reduce complications, such as exposure and tissue erosion. This work seeks to characterize a 3D-printed double-crosslinked hydrogel tissue scaffold consisting primarily of polyvinyl alcohol (PVA). It also compares its static/dynamic/thermal/biological properties to existing commercial products used in PFD therapies, showing our pelvic mesh's biodegradability/robustness advantages over the commercial ones. Tensile tests revealed that the hydrogel scaffold was more compliant than the commercial alternatives. Dynamic mechanical testing has shown that these polymers are durable enough to support organs with specific weight above the pelvic floor. <em>In vivo</em> mouse studies demonstrated low inflammation and good biocompatibility over a 28-day period. The development of this scaffold offers a promising alternative for more effective, long-lasting PFD treatments with fewer post-operative complications, advancing personalized medicine.</p>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\" 3\",\"pages\":\" 345-355\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/py/d4py01103a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py01103a\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/py/d4py01103a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

盆底疾病(PFD)在女性中很常见,引起功能障碍、尿失禁和不适。由于植入材料的设计,特别是硬度和机械不匹配,修复下降组织的手术可能会导致并发症。更灵活的植入物可以减少并发症,如暴露和组织糜烂。这项工作旨在表征主要由聚乙烯醇(PVA)组成的3d打印双交联水凝胶组织支架。它还将其静态/动态/热/生物特性与现有用于PFD治疗的商业产品进行了比较,显示了我们的骨盆网比商业产品具有生物可降解性/坚固性优势。拉伸试验表明,水凝胶支架比商业替代品更具柔韧性。动态力学测试表明,这些聚合物足够耐用,可以支撑骨盆底以上具有特定重量的器官。在小鼠体内的研究表明,在28天的时间内,低炎症和良好的生物相容性。这种支架的发展为更有效、更持久的PFD治疗提供了一种有希望的替代方案,减少了术后并发症,推进了个性化医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D printable biopolymers as pelvic floor scaffolds†

Pelvic floor disorders (PFD) are common among women, causing dysfunction, incontinence, and discomfort. Surgeries to repair the descended tissues can result in complications due to implant material design, particularly from the hardness and mechanical mismatch to native tissue. A more flexible implant could reduce complications, such as exposure and tissue erosion. This work seeks to characterize a 3D-printed double-crosslinked hydrogel tissue scaffold consisting primarily of polyvinyl alcohol (PVA). It also compares its static/dynamic/thermal/biological properties to existing commercial products used in PFD therapies, showing our pelvic mesh's biodegradability/robustness advantages over the commercial ones. Tensile tests revealed that the hydrogel scaffold was more compliant than the commercial alternatives. Dynamic mechanical testing has shown that these polymers are durable enough to support organs with specific weight above the pelvic floor. In vivo mouse studies demonstrated low inflammation and good biocompatibility over a 28-day period. The development of this scaffold offers a promising alternative for more effective, long-lasting PFD treatments with fewer post-operative complications, advancing personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
1,2-Dithiolane/yne photopolymerizations to generate high refractive index polymers Binuclear Ni catalyzed ethylene copolymerization with short chain alkenol monomers Tailoring Polyester Based-Diblock Copolymers for Boron-Enhanced Drug Delivery: Synthesis, Kinetics, and Nanoparticle Characterization In memoriam Acad. Prof. Dr Bogdan Simionescu (1948–2024) Correction: Towards the synthesis of polythiazolines: a post-polymerization approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1