基于实例的标签噪声学习估计

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-12-02 DOI:10.1007/s11263-024-02299-x
Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia
{"title":"基于实例的标签噪声学习估计","authors":"Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia","doi":"10.1007/s11263-024-02299-x","DOIUrl":null,"url":null,"abstract":"<p>Noise transition matrix estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global noise transition matrix using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global noise transition matrix can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method’s workflow has three major steps. First, we estimate each sample’s noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the noise transition matrix, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent noise transition matrix, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated noise transition matrix, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instance-dependent Label Distribution Estimation for Learning with Label Noise\",\"authors\":\"Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia\",\"doi\":\"10.1007/s11263-024-02299-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noise transition matrix estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global noise transition matrix using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global noise transition matrix can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method’s workflow has three major steps. First, we estimate each sample’s noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the noise transition matrix, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent noise transition matrix, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated noise transition matrix, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02299-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02299-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

噪声转移矩阵估计是一种很有前途的标签噪声学习方法。它可以根据有噪声的后验概率推断出干净的后验概率,即标签分布(LD),并减少有噪声标签的影响。然而,这种估计是具有挑战性的,因为基础真值标签并不总是可用的。大多数现有方法使用正确标记的样本(锚点)或检测到的可靠样本(伪锚点)来估计全局噪声转移矩阵。这些方法严重依赖于锚点的存在或伪锚点的质量,由于实际应用中的标签噪声大多依赖于实例,因此全局噪声转移矩阵很难为每个样本提供准确的标签转移信息。为了解决这些挑战,我们提出了一种基于实例的标签分布估计(ILDE)方法,从噪声标签中学习图像分类。该方法的工作流程有三个主要步骤。首先,我们估计每个样本的噪声后验概率,由噪声标签监督。其次,由于错误标记概率与类间相关性密切相关,我们计算类间相关性矩阵来估计噪声转移矩阵,而不需要(伪)锚点。此外,为了精确逼近依赖于实例的噪声转移矩阵,我们仅使用小批量样本而不是整个训练数据集计算类间相关矩阵。第三,我们通过将噪声后验概率与估计的噪声转移矩阵相乘,将其转换为实例相关的LD,使用所得LD进行增强监督,以防止DCNNs记忆噪声标签。提出的ILDE方法已经在两个合成和三个真实世界的噪声数据集上对几种最先进的方法进行了评估。结果表明,无论噪声是合成噪声还是真实噪声,所提出的ILDE方法都优于所有竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instance-dependent Label Distribution Estimation for Learning with Label Noise

Noise transition matrix estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global noise transition matrix using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global noise transition matrix can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method’s workflow has three major steps. First, we estimate each sample’s noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the noise transition matrix, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent noise transition matrix, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated noise transition matrix, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1