南极洲苔藓多样性的全大陆分析

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-12-03 DOI:10.1111/ecog.07353
Rodolfo O. Anderson, Steven L. Chown, Rachel I. Leihy
{"title":"南极洲苔藓多样性的全大陆分析","authors":"Rodolfo O. Anderson, Steven L. Chown, Rachel I. Leihy","doi":"10.1111/ecog.07353","DOIUrl":null,"url":null,"abstract":"Mosses play a key role in Antarctic ecosystems. Understanding of moss diversity and its likely drivers across Antarctica is, however, limited, as is the extent to which Antarctic Specially Protected Areas (ASPAs) represent this diversity. Both are important given changing climates and direct human impacts in the region. Here we investigate variation in moss diversity, the frequency distribution of their range sizes, and their continent-wide conservation. Richness is positively related to temperature, but negatively related to latitude, distance from bird colonies and geothermal sites; terrain roughness showed weak, yet positive, effects. Beta-diversity is similar to that found for assemblages separated by long distances, dominated by species turnover. Multi-site turnover (zeta diversity) suggests that niche-related mechanisms are likely more responsible for diversity patterns than neutral mechanisms, despite the significant role wind-driven dispersal is thought to play in structuring Antarctic biodiversity patterns. The frequency distribution of range sizes of mosses was right skewed, indicating that several moss species have very small range sizes, while a few species have larger ranges. Where ASPAs include mosses, richness varies between 1 and 41 species, with 65.1% (71 species) of the 109 species known from the continent included in the ASPA network. Twenty-four species lie within 25 km<sup>2</sup> radius of an ASPA, and 14 species beyond this distance could be considered relatively more difficult to protect. These findings lend support to the proposal that changing temperatures and expanding ice-free areas will substantially increase Antarctica's diversity. Nonetheless, the mosses are reasonably well represented by the ASPA network, contrasting with other Antarctic taxa.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"47 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continent-wide analysis of moss diversity in Antarctica\",\"authors\":\"Rodolfo O. Anderson, Steven L. Chown, Rachel I. Leihy\",\"doi\":\"10.1111/ecog.07353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mosses play a key role in Antarctic ecosystems. Understanding of moss diversity and its likely drivers across Antarctica is, however, limited, as is the extent to which Antarctic Specially Protected Areas (ASPAs) represent this diversity. Both are important given changing climates and direct human impacts in the region. Here we investigate variation in moss diversity, the frequency distribution of their range sizes, and their continent-wide conservation. Richness is positively related to temperature, but negatively related to latitude, distance from bird colonies and geothermal sites; terrain roughness showed weak, yet positive, effects. Beta-diversity is similar to that found for assemblages separated by long distances, dominated by species turnover. Multi-site turnover (zeta diversity) suggests that niche-related mechanisms are likely more responsible for diversity patterns than neutral mechanisms, despite the significant role wind-driven dispersal is thought to play in structuring Antarctic biodiversity patterns. The frequency distribution of range sizes of mosses was right skewed, indicating that several moss species have very small range sizes, while a few species have larger ranges. Where ASPAs include mosses, richness varies between 1 and 41 species, with 65.1% (71 species) of the 109 species known from the continent included in the ASPA network. Twenty-four species lie within 25 km<sup>2</sup> radius of an ASPA, and 14 species beyond this distance could be considered relatively more difficult to protect. These findings lend support to the proposal that changing temperatures and expanding ice-free areas will substantially increase Antarctica's diversity. Nonetheless, the mosses are reasonably well represented by the ASPA network, contrasting with other Antarctic taxa.\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ecog.07353\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07353","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

苔藓在南极生态系统中起着关键作用。然而,对南极洲苔藓多样性及其可能驱动因素的了解有限,南极特别保护区(ASPAs)代表这种多样性的程度也是如此。考虑到气候变化和人类对该地区的直接影响,这两者都很重要。在此,我们研究了苔藓多样性的变化,其范围大小的频率分布,以及它们在大陆范围内的保护。丰富度与温度呈正相关,与纬度、离鸟群距离和地热点负相关;地形粗糙度表现出微弱但积极的影响。β -多样性与长距离分离的组合相似,以物种更替为主。多站点转换(zeta多样性)表明,与生态位相关的机制可能比中性机制更有可能对多样性模式负责,尽管人们认为风驱动的扩散在构建南极生物多样性模式中起着重要作用。苔藓的范围大小的频率分布呈右偏态,表明有几种苔藓的范围大小很小,而少数苔藓的范围较大。在包括苔藓的ASPA网络中,丰富度在1 - 41种之间变化,其中来自大陆的109种已知物种中有65.1%(71种)被纳入ASPA网络。24种物种分布在保护区半径25平方公里以内,14种物种分布在保护区半径25平方公里以外。这些发现支持了这样一种说法,即温度的变化和无冰区的扩大将大大增加南极洲的生物多样性。尽管如此,与其他南极分类群相比,ASPA网络相当好地代表了苔藓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continent-wide analysis of moss diversity in Antarctica
Mosses play a key role in Antarctic ecosystems. Understanding of moss diversity and its likely drivers across Antarctica is, however, limited, as is the extent to which Antarctic Specially Protected Areas (ASPAs) represent this diversity. Both are important given changing climates and direct human impacts in the region. Here we investigate variation in moss diversity, the frequency distribution of their range sizes, and their continent-wide conservation. Richness is positively related to temperature, but negatively related to latitude, distance from bird colonies and geothermal sites; terrain roughness showed weak, yet positive, effects. Beta-diversity is similar to that found for assemblages separated by long distances, dominated by species turnover. Multi-site turnover (zeta diversity) suggests that niche-related mechanisms are likely more responsible for diversity patterns than neutral mechanisms, despite the significant role wind-driven dispersal is thought to play in structuring Antarctic biodiversity patterns. The frequency distribution of range sizes of mosses was right skewed, indicating that several moss species have very small range sizes, while a few species have larger ranges. Where ASPAs include mosses, richness varies between 1 and 41 species, with 65.1% (71 species) of the 109 species known from the continent included in the ASPA network. Twenty-four species lie within 25 km2 radius of an ASPA, and 14 species beyond this distance could be considered relatively more difficult to protect. These findings lend support to the proposal that changing temperatures and expanding ice-free areas will substantially increase Antarctica's diversity. Nonetheless, the mosses are reasonably well represented by the ASPA network, contrasting with other Antarctic taxa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Use and misuse of trait imputation in ecology: the problem of using out‐of‐context imputed values A pattern-oriented simulation for forecasting species spread through time and space: a case study on an ecosystem engineer on the move The best of two worlds: toward large-scale monitoring of biodiversity combining COI metabarcoding and optimized parataxonomic validation Assembly processes inferred from eDNA surveys of a pond metacommunity are consistent with known species ecologies The role of climate and species interactions in determining the distribution of two elevationally segregated species of small mammals through time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1