Omar Barrera;Nishanth Ravi;Kapil Saha;Supratik Dasgupta;Joshua Campbell;Jack Kramer;Eugene Kwon;Tzu-Hsuan Hsu;Sinwoo Cho;Ian Anderson;Pietro Simeoni;Jue Hou;Matteo Rinaldi;Mark S. Goorsky;Ruochen Lu
{"title":"18 GHz固体安装在SiO₂/Ta₂O₅Bragg反射器上的氮化钪铝谐振器","authors":"Omar Barrera;Nishanth Ravi;Kapil Saha;Supratik Dasgupta;Joshua Campbell;Jack Kramer;Eugene Kwon;Tzu-Hsuan Hsu;Sinwoo Cho;Ian Anderson;Pietro Simeoni;Jue Hou;Matteo Rinaldi;Mark S. Goorsky;Ruochen Lu","doi":"10.1109/JMEMS.2024.3472615","DOIUrl":null,"url":null,"abstract":"This work reports an acoustic solidly mounted resonator (SMR) at 18.64 GHz, among the highest operating frequencies reported. The device is built in scandium aluminum nitride (ScAlN) on top of silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) Bragg reflectors on silicon (Si) wafer. The stack is analyzed with X-ray reflectivity (XRR) and high-resolution X-ray diffraction (HRXRD). The resonator shows a coupling coefficient (\n<inline-formula> <tex-math>$k^{2}$ </tex-math></inline-formula>\n) of 2.0%, high series quality factor (\n<inline-formula> <tex-math>$Q_{s}$ </tex-math></inline-formula>\n) of 156, shunt quality factor (\n<inline-formula> <tex-math>$Q_{p}$ </tex-math></inline-formula>\n) of 142, and maximum Bode quality factor (\n<inline-formula> <tex-math>$Q_{max}$ </tex-math></inline-formula>\n) of 210. The third-order harmonics at 59.64 GHz is also observed with \n<inline-formula> <tex-math>$k^{2}$ </tex-math></inline-formula>\n around 0.6% and Q around 40. Upon further development, the reported acoustic resonator platform can enable various front-end signal-processing functions, e.g., filters and oscillators, at future frequency range 3 (FR3) bands.[2024-0120]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"711-716"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"18 GHz Solidly Mounted Resonator in Scandium Aluminum Nitride on SiO₂/Ta₂O₅ Bragg Reflector\",\"authors\":\"Omar Barrera;Nishanth Ravi;Kapil Saha;Supratik Dasgupta;Joshua Campbell;Jack Kramer;Eugene Kwon;Tzu-Hsuan Hsu;Sinwoo Cho;Ian Anderson;Pietro Simeoni;Jue Hou;Matteo Rinaldi;Mark S. Goorsky;Ruochen Lu\",\"doi\":\"10.1109/JMEMS.2024.3472615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports an acoustic solidly mounted resonator (SMR) at 18.64 GHz, among the highest operating frequencies reported. The device is built in scandium aluminum nitride (ScAlN) on top of silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) Bragg reflectors on silicon (Si) wafer. The stack is analyzed with X-ray reflectivity (XRR) and high-resolution X-ray diffraction (HRXRD). The resonator shows a coupling coefficient (\\n<inline-formula> <tex-math>$k^{2}$ </tex-math></inline-formula>\\n) of 2.0%, high series quality factor (\\n<inline-formula> <tex-math>$Q_{s}$ </tex-math></inline-formula>\\n) of 156, shunt quality factor (\\n<inline-formula> <tex-math>$Q_{p}$ </tex-math></inline-formula>\\n) of 142, and maximum Bode quality factor (\\n<inline-formula> <tex-math>$Q_{max}$ </tex-math></inline-formula>\\n) of 210. The third-order harmonics at 59.64 GHz is also observed with \\n<inline-formula> <tex-math>$k^{2}$ </tex-math></inline-formula>\\n around 0.6% and Q around 40. Upon further development, the reported acoustic resonator platform can enable various front-end signal-processing functions, e.g., filters and oscillators, at future frequency range 3 (FR3) bands.[2024-0120]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 6\",\"pages\":\"711-716\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10718726/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10718726/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
18 GHz Solidly Mounted Resonator in Scandium Aluminum Nitride on SiO₂/Ta₂O₅ Bragg Reflector
This work reports an acoustic solidly mounted resonator (SMR) at 18.64 GHz, among the highest operating frequencies reported. The device is built in scandium aluminum nitride (ScAlN) on top of silicon dioxide (SiO2) and tantalum pentoxide (Ta2O5) Bragg reflectors on silicon (Si) wafer. The stack is analyzed with X-ray reflectivity (XRR) and high-resolution X-ray diffraction (HRXRD). The resonator shows a coupling coefficient (
$k^{2}$
) of 2.0%, high series quality factor (
$Q_{s}$
) of 156, shunt quality factor (
$Q_{p}$
) of 142, and maximum Bode quality factor (
$Q_{max}$
) of 210. The third-order harmonics at 59.64 GHz is also observed with
$k^{2}$
around 0.6% and Q around 40. Upon further development, the reported acoustic resonator platform can enable various front-end signal-processing functions, e.g., filters and oscillators, at future frequency range 3 (FR3) bands.[2024-0120]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.