Zdeněk Janků, Jan Geletič, Michal Lehnert, Petr Dobrovolný
{"title":"全球变暖导致的城市热量增加受土地利用和土地覆盖结构的显著影响","authors":"Zdeněk Janků, Jan Geletič, Michal Lehnert, Petr Dobrovolný","doi":"10.1002/joc.8642","DOIUrl":null,"url":null,"abstract":"<p>Urban populations are increasingly exposed to excessive heat. Heat distribution in the urban environment can be affected by several factors, including the spatial arrangement of land use/land cover (LULC) that is specific to a given city. This study applies a climate model with urban canopy parameterisation to downscale future climate projections and simulate the spatio-temporal pattern of heat in the urban environment to better understand the effect of LULC structure on its distribution. Heat conditions are characterised by climate indices that are well representative in two mid-sized Central European cities of Brno and Ostrava (Czech Republic). Our results show that the annual number of hot days (HOT), summer days (SUD), tropical nights (TRN) and warm nights (WAN) will increase significantly (<i>p</i> < 0.01) in the 21st century in both cities. The model also simulates a more intensive increase and a higher spatio-temporal variability in all indices in Brno compared to Ostrava. In Brno, the annual number of HOT and TRN is projected to be more than 500% of the 1981–2010 reference period's value by the end of the 21st century under the RCP 8.5 scenario. To determine the causes of the differences in heat distribution, we applied LULC configuration metrics and correlation analysis using various geographical factors. The higher risk of urban heat in Brno compared to Ostrava can be attributed to a more homogenised and less fragmented LULC structure and to the more substantial role of altitude in the complex terrain of Brno. Other factors, such as the presence of impervious surfaces and vegetation, have a similar effect on the variability of the studied indices in both cities. Urban planners should consider the role of the LULC structure and the changes that can be made in a city when designing adaptation measures to mitigate the effects of urban heat.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5381-5397"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8642","citationCount":"0","resultStr":"{\"title\":\"The Increase in Urban Heat Due to Global Warming Can be Significantly Affected by the Structure of the Land Use and Land Cover\",\"authors\":\"Zdeněk Janků, Jan Geletič, Michal Lehnert, Petr Dobrovolný\",\"doi\":\"10.1002/joc.8642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urban populations are increasingly exposed to excessive heat. Heat distribution in the urban environment can be affected by several factors, including the spatial arrangement of land use/land cover (LULC) that is specific to a given city. This study applies a climate model with urban canopy parameterisation to downscale future climate projections and simulate the spatio-temporal pattern of heat in the urban environment to better understand the effect of LULC structure on its distribution. Heat conditions are characterised by climate indices that are well representative in two mid-sized Central European cities of Brno and Ostrava (Czech Republic). Our results show that the annual number of hot days (HOT), summer days (SUD), tropical nights (TRN) and warm nights (WAN) will increase significantly (<i>p</i> < 0.01) in the 21st century in both cities. The model also simulates a more intensive increase and a higher spatio-temporal variability in all indices in Brno compared to Ostrava. In Brno, the annual number of HOT and TRN is projected to be more than 500% of the 1981–2010 reference period's value by the end of the 21st century under the RCP 8.5 scenario. To determine the causes of the differences in heat distribution, we applied LULC configuration metrics and correlation analysis using various geographical factors. The higher risk of urban heat in Brno compared to Ostrava can be attributed to a more homogenised and less fragmented LULC structure and to the more substantial role of altitude in the complex terrain of Brno. Other factors, such as the presence of impervious surfaces and vegetation, have a similar effect on the variability of the studied indices in both cities. Urban planners should consider the role of the LULC structure and the changes that can be made in a city when designing adaptation measures to mitigate the effects of urban heat.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 15\",\"pages\":\"5381-5397\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8642\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8642","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Increase in Urban Heat Due to Global Warming Can be Significantly Affected by the Structure of the Land Use and Land Cover
Urban populations are increasingly exposed to excessive heat. Heat distribution in the urban environment can be affected by several factors, including the spatial arrangement of land use/land cover (LULC) that is specific to a given city. This study applies a climate model with urban canopy parameterisation to downscale future climate projections and simulate the spatio-temporal pattern of heat in the urban environment to better understand the effect of LULC structure on its distribution. Heat conditions are characterised by climate indices that are well representative in two mid-sized Central European cities of Brno and Ostrava (Czech Republic). Our results show that the annual number of hot days (HOT), summer days (SUD), tropical nights (TRN) and warm nights (WAN) will increase significantly (p < 0.01) in the 21st century in both cities. The model also simulates a more intensive increase and a higher spatio-temporal variability in all indices in Brno compared to Ostrava. In Brno, the annual number of HOT and TRN is projected to be more than 500% of the 1981–2010 reference period's value by the end of the 21st century under the RCP 8.5 scenario. To determine the causes of the differences in heat distribution, we applied LULC configuration metrics and correlation analysis using various geographical factors. The higher risk of urban heat in Brno compared to Ostrava can be attributed to a more homogenised and less fragmented LULC structure and to the more substantial role of altitude in the complex terrain of Brno. Other factors, such as the presence of impervious surfaces and vegetation, have a similar effect on the variability of the studied indices in both cities. Urban planners should consider the role of the LULC structure and the changes that can be made in a city when designing adaptation measures to mitigate the effects of urban heat.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions