利用纳米技术提高大麻素在胶质母细胞瘤多形性治疗中的生物制药特性:一个药物传递的角度

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL Drug Development Research Pub Date : 2024-12-02 DOI:10.1002/ddr.70023
Stephanie B. Walker, Jonatas L. Duarte, Leonardo D. Di Filippo, Marlus Chorilli
{"title":"利用纳米技术提高大麻素在胶质母细胞瘤多形性治疗中的生物制药特性:一个药物传递的角度","authors":"Stephanie B. Walker,&nbsp;Jonatas L. Duarte,&nbsp;Leonardo D. Di Filippo,&nbsp;Marlus Chorilli","doi":"10.1002/ddr.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis. Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy. The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells. Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Biopharmaceutical Properties of Cannabinoids in Glioblastoma Multiforme Therapy With Nanotechnology: A Drug Delivery Perspective\",\"authors\":\"Stephanie B. Walker,&nbsp;Jonatas L. Duarte,&nbsp;Leonardo D. Di Filippo,&nbsp;Marlus Chorilli\",\"doi\":\"10.1002/ddr.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis. Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy. The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells. Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 8\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是成人中最常见的原发性脑肿瘤,以其快速增殖和浸润性而闻名。目前的治疗策略包括手术切除后放疗和化疗。但受GBM生物学特性和化疗药物理化特性的制约,疗效有限,预后较差。大麻素已成为潜在的抗gbm药物,表现出抗血管生成,抗转移和抗增殖作用。然而,它们的疏水性和较差的口服生物利用度对临床应用构成了重大挑战。本研究评估了纳米载体在提高大麻素在GBM治疗中的溶解度和靶向递送方面的潜力。纳米技术与基于大麻素的治疗的创新组合为改善治疗结果提供了一个有希望的策略。我们解决了纳米载体递送大麻素的应用,它可以增强通过血脑屏障并实现靶向治疗。研究证明了纳米载体在改善大麻素的溶解度、稳定性和控制释放方面的潜力,突出了纳米载体设计在优化胶质瘤细胞递送方面的进展。大麻素可以发挥抗肿瘤作用,包括通过神经酰胺和p8调控的途径诱导细胞凋亡,调节免疫反应。本研究中发现的证据支持基于大麻素的纳米技术在GBM治疗方案中的潜力,作为一种提高疗效和患者预后的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Biopharmaceutical Properties of Cannabinoids in Glioblastoma Multiforme Therapy With Nanotechnology: A Drug Delivery Perspective

Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis. Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy. The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells. Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
期刊最新文献
Novel Benzosuberone/Indanone-Linked Thiazoles as Small-Molecule SARS-CoV-2 Main Protease Inhibitors. A Novel Topical Compound Gel Loading Minoxidil and Tofacitinib for Treatment of Alopecia Areata: Formulation, Characterization, and In Vitro/In Vivo Evaluation Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors Strategies for the Discovery and Design of Tissue Plasminogen Activators: Insights Into Bioengineering Objectives A Novel Oxo-Palmatine Derivative 2q as Potent Reversal Agents Against Alzheimer's Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1