热分析中铝硅酸钠玻璃的焓弛豫

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Glass Science Pub Date : 2024-09-25 DOI:10.1111/ijag.16688
Brittney M. Hauke, John C. Mauro
{"title":"热分析中铝硅酸钠玻璃的焓弛豫","authors":"Brittney M. Hauke,&nbsp;John C. Mauro","doi":"10.1111/ijag.16688","DOIUrl":null,"url":null,"abstract":"<p>The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (<i>T</i><sub>g</sub>), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and low <i>T</i><sub>g</sub> glasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on high <i>T</i><sub>g</sub> oxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for high <i>T</i><sub>g</sub> oxide glasses.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16688","citationCount":"0","resultStr":"{\"title\":\"Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis\",\"authors\":\"Brittney M. Hauke,&nbsp;John C. Mauro\",\"doi\":\"10.1111/ijag.16688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (<i>T</i><sub>g</sub>), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and low <i>T</i><sub>g</sub> glasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on high <i>T</i><sub>g</sub> oxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for high <i>T</i><sub>g</sub> oxide glasses.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16688\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16688\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16688","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

铝硅酸钠(NAS)玻璃家族在许多不同的工业应用中都很重要,但在该体系中玻璃弛豫尚未得到深入的研究。热分析技术如差示扫描量热法(DSC)和调制差示扫描量热法(MDSC)可以通过测量玻璃转变温度(Tg)、活化能和弛豫焓来深入了解玻璃的焓弛豫。MDSC主要用于非氧化玻璃和低Tg玻璃的研究,对于非可逆热流分析方法是否准确存在很多争论。据作者所知,这是第一篇使用MDSC研究这些NAS组成的论文,也是少数报道MDSC研究高Tg氧化玻璃的论文之一。我们报道了一组利用Lissajous曲线获得线性响应的调制条件,并将DSC计算的活化能与MDSC计算的松弛焓进行了比较。我们的结果表明,活化能和弛豫焓并没有给出相同的组分弛豫最小值,因此需要更多的工作来研究非逆转热流方法对高Tg氧化玻璃的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis

The sodium aluminosilicate (NAS) glass family is important for many different industrial applications, but glass relaxation has not yet been thoroughly studied in this system. Thermal analysis techniques such as differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) can provide insight into the enthalpy relaxation of glass by measuring the glass transition temperature (Tg), activation energy, and enthalpy of relaxation. MDSC is mostly used to study nonoxide and low Tg glasses, and there is much debate about whether the nonreversing heat flow analysis method is accurate. To the authors’ knowledge, this is the first paper using MDSC to study these NAS compositions, and one of few papers to report MDSC on high Tg oxide glasses. We report on one set of modulation conditions that obtain a linear response using Lissajous curves, as well as comparing the activation energy calculated from DSC with the enthalpy of relaxation obtained from MDSC. Our results show that the activation energy and enthalpy of relaxation do not give the same compositional minimum in relaxation, and therefore more work is needed to investigate the validity of the nonreversing heat flow approach for high Tg oxide glasses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
期刊最新文献
Issue Information Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals A survey of commercial soda–lime–silica glass compositions: Trends and opportunities I—Compositions, properties and theoretical energy requirements Anti-glare performance of sol-gel-derived spray coatings prepared with various water-to-alkoxide ratios Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1