微孔MgO粉对MgO- mgal2o4陶瓷过滤器强度和抗热震性能的影响:α-Al2O3微粉含量的影响

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Ceramic Technology Pub Date : 2024-09-24 DOI:10.1111/ijac.14921
Ying Liu, Wen Yan, Junjie Yan, Yajie Dai, Xiao Wang, Qiang Wang, Nan Li
{"title":"微孔MgO粉对MgO- mgal2o4陶瓷过滤器强度和抗热震性能的影响:α-Al2O3微粉含量的影响","authors":"Ying Liu,&nbsp;Wen Yan,&nbsp;Junjie Yan,&nbsp;Yajie Dai,&nbsp;Xiao Wang,&nbsp;Qiang Wang,&nbsp;Nan Li","doi":"10.1111/ijac.14921","DOIUrl":null,"url":null,"abstract":"<p>In this work, MgO-MgAl<sub>2</sub>O<sub>4</sub> ceramic filters were fabricated from microporous MgO powder and α-Al<sub>2</sub>O<sub>3</sub> micro-powder, in which microporous MgO powder was prepared using Mg(OH)<sub>2</sub> as initial raw material. With the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content increased from 0 to 15 wt%, the tight packing and reaction sintering between MgO microparticles and Al<sub>2</sub>O<sub>3</sub> microparticles promoted the formation and growth of magnesium aluminate spinel necks, reduced the apparent porosity of ceramic filter skeletons, decreased the pore size, and improved the strength of the filters. When the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content further raised to 20 wt%, the thermal mismatch between MgO microparticles and spinel microparticles caused a small amount of crack generation, which lowered the strength of the filter. Besides, after introducing the α-Al<sub>2</sub>O<sub>3</sub> micro-powder, more spinel necks were produced due to a small amount of MgO solid dissolved in the spinel lattice during the thermal shock test, which enhanced the thermal shock resistance of the filters. When the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content was 15 wt%, the filter had excellent comprehensive performance, the bulk density and apparent porosity of the filter skeleton were 3.09 g/cm<sup>3</sup> and 10.7%, and the compressive strength before and after thermal shock test was 3.48 and 3.70 MPa, respectively.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of strength and thermal shock resistance of MgO-MgAl2O4 ceramic filters with microporous MgO powder: Effect of α-Al2O3 micro-powder content\",\"authors\":\"Ying Liu,&nbsp;Wen Yan,&nbsp;Junjie Yan,&nbsp;Yajie Dai,&nbsp;Xiao Wang,&nbsp;Qiang Wang,&nbsp;Nan Li\",\"doi\":\"10.1111/ijac.14921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, MgO-MgAl<sub>2</sub>O<sub>4</sub> ceramic filters were fabricated from microporous MgO powder and α-Al<sub>2</sub>O<sub>3</sub> micro-powder, in which microporous MgO powder was prepared using Mg(OH)<sub>2</sub> as initial raw material. With the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content increased from 0 to 15 wt%, the tight packing and reaction sintering between MgO microparticles and Al<sub>2</sub>O<sub>3</sub> microparticles promoted the formation and growth of magnesium aluminate spinel necks, reduced the apparent porosity of ceramic filter skeletons, decreased the pore size, and improved the strength of the filters. When the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content further raised to 20 wt%, the thermal mismatch between MgO microparticles and spinel microparticles caused a small amount of crack generation, which lowered the strength of the filter. Besides, after introducing the α-Al<sub>2</sub>O<sub>3</sub> micro-powder, more spinel necks were produced due to a small amount of MgO solid dissolved in the spinel lattice during the thermal shock test, which enhanced the thermal shock resistance of the filters. When the α-Al<sub>2</sub>O<sub>3</sub> micro-powder content was 15 wt%, the filter had excellent comprehensive performance, the bulk density and apparent porosity of the filter skeleton were 3.09 g/cm<sup>3</sup> and 10.7%, and the compressive strength before and after thermal shock test was 3.48 and 3.70 MPa, respectively.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14921\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14921","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以微孔MgO粉和α-Al2O3微粉为原料,以Mg(OH)2为初始原料制备微孔MgO粉,制备了MgO- mgal2o4陶瓷滤光片。随着α-Al2O3微粉含量从0 wt%增加到15 wt%, MgO微颗粒与Al2O3微颗粒之间的紧密堆积和反应烧结促进了铝酸镁尖晶石颈的形成和生长,降低了陶瓷滤材骨架的表观孔隙率,减小了孔径,提高了滤材的强度。当α-Al2O3微粉含量进一步提高到20 wt%时,MgO微粉与尖晶石微粉之间的热失配导致了少量裂纹的产生,降低了滤料的强度。此外,引入α-Al2O3微粉后,在热冲击试验中,由于少量的MgO固体溶解在尖晶石晶格中,产生了更多的尖晶石颈,提高了滤材的抗热冲击性能。当α-Al2O3微粉含量为15 wt%时,滤材综合性能优异,滤材骨架的容重和表观孔隙率分别为3.09 g/cm3和10.7%,热冲击试验前后的抗压强度分别为3.48和3.70 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of strength and thermal shock resistance of MgO-MgAl2O4 ceramic filters with microporous MgO powder: Effect of α-Al2O3 micro-powder content

In this work, MgO-MgAl2O4 ceramic filters were fabricated from microporous MgO powder and α-Al2O3 micro-powder, in which microporous MgO powder was prepared using Mg(OH)2 as initial raw material. With the α-Al2O3 micro-powder content increased from 0 to 15 wt%, the tight packing and reaction sintering between MgO microparticles and Al2O3 microparticles promoted the formation and growth of magnesium aluminate spinel necks, reduced the apparent porosity of ceramic filter skeletons, decreased the pore size, and improved the strength of the filters. When the α-Al2O3 micro-powder content further raised to 20 wt%, the thermal mismatch between MgO microparticles and spinel microparticles caused a small amount of crack generation, which lowered the strength of the filter. Besides, after introducing the α-Al2O3 micro-powder, more spinel necks were produced due to a small amount of MgO solid dissolved in the spinel lattice during the thermal shock test, which enhanced the thermal shock resistance of the filters. When the α-Al2O3 micro-powder content was 15 wt%, the filter had excellent comprehensive performance, the bulk density and apparent porosity of the filter skeleton were 3.09 g/cm3 and 10.7%, and the compressive strength before and after thermal shock test was 3.48 and 3.70 MPa, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
期刊最新文献
Contents Fabrication of zirconium nitride-zirconia toughened alumina core-shell ceramics as surrogate for the uranium nitride-uranium dioxide core-shell ceramic fuel Performance variation with pristine and doped high-k materials via atomic layer deposition Contents Densification of ceramics and ceramic-based composites using ultralow temperature sintering (cold sintering): A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1